dc.contributor.author |
Polyrakis, IA |
en |
dc.date.accessioned |
2014-03-01T01:53:57Z |
|
dc.date.available |
2014-03-01T01:53:57Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0022-247X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27149 |
|
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
BANACH-SPACES |
en |
dc.subject.other |
L1(GAMMA) |
en |
dc.title |
Embeddability of L-1(mu) in dual spaces, geometry of cones and a characterization of c(0) |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
In this article we suppose that (Omega, Sigma, mu) is a measure space and T an one-to-one, linear, continuous operator of L-1(mu) into the dual E' of a Banach space E. For any measurable set A consider the image T(L-1(+) (mu(A))) of the positive cone of the space L-1(mu(A)) in E', where mu(A) is the restriction of the measure mu on A. We provide geometrical conditions on the cones T(L-1(+)(mu(A))) Which yield that the measure mu is atomic, i.e., that L-1(mu) is lattice isometric to l(1)(A), where A denotes the set of atoms of mu. This result yields also a new characterization of c(o)(Gamma). (C) 2003 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
en |
heal.journalName |
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS |
en |
dc.identifier.isi |
ISI:000187346400011 |
en |
dc.identifier.volume |
289 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
126 |
en |
dc.identifier.epage |
142 |
en |