dc.contributor.author |
Bodon, F |
en |
dc.contributor.author |
Kouris, I |
en |
dc.contributor.author |
Makris, C |
en |
dc.contributor.author |
Tsakalidis, A |
en |
dc.date.accessioned |
2014-03-01T01:54:09Z |
|
dc.date.available |
2014-03-01T01:54:09Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27214 |
|
dc.relation.uri |
http://iospress.metapress.com/openurl.asp?genre=article&issn=1088-467X&volume=9&issue=1&spage=83 |
en |
dc.relation.uri |
http://www.informatik.uni-trier.de/~ley/db/journals/ida/ida9.html#BodonKMT05 |
en |
dc.subject |
Association Rule |
en |
dc.subject |
Data Mining |
en |
dc.subject |
frequent itemset |
en |
dc.title |
Automatic discovery of locally frequent itemsets in the presence of highly frequent itemsets |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
Abstract. Many alternatives have been proposed,for the mining of association rules involving rare but ‘interesting’ itemsets in a dataset where there also exist highly frequent itemsets. Nevertheless, all the approaches thus far suggested that we knew which those interesting itemsets are, as well as which is the right support value for them. None of the approaches proposed a way,of automatically |
en |
heal.journalName |
Intelligent Data Analysis |
en |