dc.contributor.author |
Valorani, M |
en |
dc.contributor.author |
Goussis, D |
en |
dc.contributor.author |
Creta, F |
en |
dc.contributor.author |
Najm, H |
en |
dc.date.accessioned |
2014-03-01T01:54:14Z |
|
dc.date.available |
2014-03-01T01:54:14Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27264 |
|
dc.subject |
Chemical Kinetics |
en |
dc.subject |
Invariant Manifold |
en |
dc.subject |
Ordinary Differential Equation |
en |
dc.subject |
Rate of Change |
en |
dc.subject |
Time Scale |
en |
dc.subject |
Computational Singular Perturbation |
en |
dc.subject |
Higher Order |
en |
dc.title |
Higher order corrections in the approximation of low-dimensional manifolds and the construction of simplified problems with the CSP method |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jcp.2005.03.033 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jcp.2005.03.033 |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
In systems of stiff Ordinary Differential Equations (ODEs) both fast and slow time scales are encountered. The fast time scales are responsible for the development of low-dimensional manifolds on which the solution moves according to the slow time scales. In this paper, methodologies for constructing highly accurate (i) expressions describing the manifold, and (ii) simplified non-stiff equations governing the slow |
en |
heal.journalName |
Journal of Computational Physics |
en |
dc.identifier.doi |
10.1016/j.jcp.2005.03.033 |
en |