dc.contributor.author |
Karakasis, M |
en |
dc.contributor.author |
Giannakoglou, K |
en |
dc.date.accessioned |
2014-03-01T01:54:16Z |
|
dc.date.available |
2014-03-01T01:54:16Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27282 |
|
dc.relation.uri |
http://velos0.ltt.mech.ntua.gr/research/pdfs/3_075.pdf |
en |
dc.subject |
Evaluation Model |
en |
dc.subject |
Evolutionary Algorithm |
en |
dc.subject |
Evolutionary Optimization |
en |
dc.subject |
Generalization Capability |
en |
dc.subject |
Multi Objective Evolutionary Algorithm |
en |
dc.subject |
Multi Objective Optimization |
en |
dc.subject |
Radial Basis Function Network |
en |
dc.subject |
Self Organization |
en |
dc.title |
METAMODEL-ASSISTED MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
The use of surrogate evaluation models or metamodels in multi-objective Evolutionary Algorithms with computationally expensive evaluations for the reduction of computational cost, through controlled approximate evaluations of generation members, is presented. The metamodels assist the Evolutionary Algorithm by filtering the poorly performing individuals within each generation and subsequently by allowing only the most promising among them to be exactly evaluated. |
en |