dc.contributor.author |
Chrysafinos, K |
en |
dc.date.accessioned |
2014-03-01T01:54:17Z |
|
dc.date.available |
2014-03-01T01:54:17Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27291 |
|
dc.subject |
advection-diffusion equation |
en |
dc.subject |
Error Estimate |
en |
dc.subject |
Finite Element Method |
en |
dc.subject |
Moving Mesh |
en |
dc.subject |
Optimal Control |
en |
dc.subject |
Optimal Control Problem |
en |
dc.title |
Moving Mesh Finite Element Methods for an Optimal Control Problem for the Advection-Diffusion Equation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10915-004-4804-6 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10915-004-4804-6 |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
An optimal control problem for the advection-diffusion equation is studied using a Lagrangian-moving mesh finite element method. The weak formulation of the model advection–diffusion equation is based on Lagrangian coordinates, and semi–discrete (in space) error estimates are derived under minimal regularity assumptions. In addition, using these estimates and Brezzi-Rappaz-Raviart theory, symmetric error estimates for the optimality system are derived. The |
en |
heal.journalName |
Journal of Scientific Computing |
en |
dc.identifier.doi |
10.1007/s10915-004-4804-6 |
en |