dc.contributor.author |
Fotakis, D |
en |
dc.contributor.author |
Nikoletseas, S |
en |
dc.contributor.author |
Papadopoulou, V |
en |
dc.contributor.author |
Spirakis, P |
en |
dc.date.accessioned |
2014-03-01T01:54:20Z |
|
dc.date.available |
2014-03-01T01:54:20Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27322 |
|
dc.subject |
Approximation Scheme |
en |
dc.subject |
Computational Complexity |
en |
dc.subject |
Graph Coloring Problem |
en |
dc.subject |
Maximum Degree |
en |
dc.subject |
Mobile Computer |
en |
dc.subject |
Planar Graph |
en |
dc.subject |
Radio Networks |
en |
dc.subject |
Frequency Assignment Problem |
en |
dc.title |
Radiocoloring in planar graphs: Complexity and approximations |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.tcs.2005.03.013 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.tcs.2005.03.013 |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
The Frequency Assignment Problem (FAP) in radio networks is the problem of assigning frequen- cies to transmitters, by exploiting frequency reuse while keeping signal interference to acceptable levels. The FAP is usually modelled by variations of the graph coloring problem. A Radiocoloring (RC) of a graph G(V , E) is an assignment function : V → N such that |(u) |
en |
heal.journalName |
Theoretical Computer Science |
en |
dc.identifier.doi |
10.1016/j.tcs.2005.03.013 |
en |