dc.contributor.author |
Kouris, I |
en |
dc.contributor.author |
Makris, C |
en |
dc.contributor.author |
Tsakalidis, A |
en |
dc.date.accessioned |
2014-03-01T01:54:22Z |
|
dc.date.available |
2014-03-01T01:54:22Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27354 |
|
dc.subject |
Association Rule |
en |
dc.subject |
Data Mining |
en |
dc.subject |
Data Type |
en |
dc.subject |
E Commerce |
en |
dc.subject |
Indexation |
en |
dc.subject |
Information Retrieval |
en |
dc.subject |
Knowledge Discovery |
en |
dc.subject |
Search Engine |
en |
dc.subject |
Search Space |
en |
dc.title |
Using Information Retrieval techniques for supporting data mining |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.datak.2004.07.004 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.datak.2004.07.004 |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
The classic two-stepped approach of the Apriori algorithm and its descendants, which consisted of finding all large itemsets and then using these itemsets to generate all association rules has worked well for certain categories of data. Nevertheless for many other data types this approach shows highly degraded performance and proves rather inefficient.We argue that we need to search all the |
en |
heal.journalName |
Data & Knowledge Engineering |
en |
dc.identifier.doi |
10.1016/j.datak.2004.07.004 |
en |