HEAL DSpace

Automated diagnosis of brain tumours astrocytomas using probabilistic neural network clustering and support vector machines

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Glotsos, D en
dc.contributor.author Tohka, J en
dc.contributor.author Ravazoula, P en
dc.contributor.author Cavouras, D en
dc.contributor.author Nikiforidis, G en
dc.date.accessioned 2014-03-01T01:54:24Z
dc.date.available 2014-03-01T01:54:24Z
dc.date.issued 2005 en
dc.identifier.issn 01290657 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/27370
dc.subject Astrocytomas en
dc.subject Grading en
dc.subject Microscopy en
dc.subject Probabilistic neural network en
dc.subject Support vector machines en
dc.subject.other algorithm en
dc.subject.other article en
dc.subject.other artificial neural network en
dc.subject.other astrocytoma en
dc.subject.other brain tumor en
dc.subject.other cluster analysis en
dc.subject.other computer assisted diagnosis en
dc.subject.other human en
dc.subject.other image processing en
dc.subject.other methodology en
dc.subject.other sensitivity and specificity en
dc.subject.other Algorithms en
dc.subject.other Astrocytoma en
dc.subject.other Brain Neoplasms en
dc.subject.other Cluster Analysis en
dc.subject.other Diagnosis, Computer-Assisted en
dc.subject.other Humans en
dc.subject.other Image Processing, Computer-Assisted en
dc.subject.other Neural Networks (Computer) en
dc.subject.other Sensitivity and Specificity en
dc.title Automated diagnosis of brain tumours astrocytomas using probabilistic neural network clustering and support vector machines en
heal.type journalArticle en
heal.identifier.primary 10.1142/S0129065705000013 en
heal.identifier.secondary http://dx.doi.org/10.1142/S0129065705000013 en
heal.publicationDate 2005 en
heal.abstract A computer-aided diagnosis system was developed for assisting brain astrocytomas malignancy grading. Microscopy images from 140 astrocytic biopsies were digitized and cell nuclei were automatically segmented using a Probabilistic Neural Network pixel-based clustering algorithm. A decision tree classification scheme was constructed to discriminate low, intermediate and high-grade tumours by analyzing nuclear features extracted from segmented nuclei with a Support Vector Machine classifier. Nuclei were segmented with an average accuracy of 86.5%. Low, intermediate, and high-grade tumours were identified with 95%, 88.3%, and 91% accuracies respectively. The proposed algorithm could be used as a second opinion tool for the histopathologists. © World Scientific Publishing Company. en
heal.journalName International Journal of Neural Systems en
dc.identifier.doi 10.1142/S0129065705000013 en
dc.identifier.volume 15 en
dc.identifier.issue 1-2 en
dc.identifier.spage 1 en
dc.identifier.epage 11 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής