dc.contributor.author |
Glotsos, D |
en |
dc.contributor.author |
Tohka, J |
en |
dc.contributor.author |
Ravazoula, P |
en |
dc.contributor.author |
Cavouras, D |
en |
dc.contributor.author |
Nikiforidis, G |
en |
dc.date.accessioned |
2014-03-01T01:54:24Z |
|
dc.date.available |
2014-03-01T01:54:24Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
01290657 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27370 |
|
dc.subject |
Astrocytomas |
en |
dc.subject |
Grading |
en |
dc.subject |
Microscopy |
en |
dc.subject |
Probabilistic neural network |
en |
dc.subject |
Support vector machines |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
article |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
astrocytoma |
en |
dc.subject.other |
brain tumor |
en |
dc.subject.other |
cluster analysis |
en |
dc.subject.other |
computer assisted diagnosis |
en |
dc.subject.other |
human |
en |
dc.subject.other |
image processing |
en |
dc.subject.other |
methodology |
en |
dc.subject.other |
sensitivity and specificity |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Astrocytoma |
en |
dc.subject.other |
Brain Neoplasms |
en |
dc.subject.other |
Cluster Analysis |
en |
dc.subject.other |
Diagnosis, Computer-Assisted |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Image Processing, Computer-Assisted |
en |
dc.subject.other |
Neural Networks (Computer) |
en |
dc.subject.other |
Sensitivity and Specificity |
en |
dc.title |
Automated diagnosis of brain tumours astrocytomas using probabilistic neural network clustering and support vector machines |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1142/S0129065705000013 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1142/S0129065705000013 |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
A computer-aided diagnosis system was developed for assisting brain astrocytomas malignancy grading. Microscopy images from 140 astrocytic biopsies were digitized and cell nuclei were automatically segmented using a Probabilistic Neural Network pixel-based clustering algorithm. A decision tree classification scheme was constructed to discriminate low, intermediate and high-grade tumours by analyzing nuclear features extracted from segmented nuclei with a Support Vector Machine classifier. Nuclei were segmented with an average accuracy of 86.5%. Low, intermediate, and high-grade tumours were identified with 95%, 88.3%, and 91% accuracies respectively. The proposed algorithm could be used as a second opinion tool for the histopathologists. © World Scientific Publishing Company. |
en |
heal.journalName |
International Journal of Neural Systems |
en |
dc.identifier.doi |
10.1142/S0129065705000013 |
en |
dc.identifier.volume |
15 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
11 |
en |