HEAL DSpace

Modelling and FDI of dynamic discrete time systems using a MLP with a new sigmoidal activation function

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Skoundrianos, EN en
dc.contributor.author Tzafestas, SG en
dc.date.accessioned 2014-03-01T01:54:28Z
dc.date.available 2014-03-01T01:54:28Z
dc.date.issued 2005 en
dc.identifier.issn 09210296 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/27399
dc.subject Fault detection and identification en
dc.subject Multi-layer perceptron en
dc.subject Sigmoidal activation functions en
dc.subject System modelling en
dc.subject Three tank system en
dc.subject.other Benchmarking en
dc.subject.other Computer simulation en
dc.subject.other Identification (control systems) en
dc.subject.other Mathematical models en
dc.subject.other Multilayer neural networks en
dc.subject.other Fault detection and identification en
dc.subject.other Sigmoidal activation functions en
dc.subject.other System modeling en
dc.subject.other Three tank system en
dc.subject.other Discrete time control systems en
dc.title Modelling and FDI of dynamic discrete time systems using a MLP with a new sigmoidal activation function en
heal.type journalArticle en
heal.identifier.primary 10.1023/B:JINT.0000049175.78893.2f en
heal.identifier.secondary http://dx.doi.org/10.1023/B:JINT.0000049175.78893.2f en
heal.publicationDate 2005 en
heal.abstract In this paper we investigate the use of the multi-layer perceptron (MLP) for system modelling. A new sigmoidal activation function is introduced and the study is focused at the utilization of this function on a MLP that performs modelling of dynamic, discrete time systems. The role of the activation function in the training process is investigated analytically, and it is proven that the shape of the activation function and it's derivative can affect the training outcome. The method, is simulated at a well known benchmark, namely the three tank system, and is incorporated in a Fault Detection and Identification (FDI) method, also applied and simulated at the three tank system. Finally, a comparison is made with an approach that utilizes local model neural networks for system modeling. © 2004 Kluwer Academic Publishers. en
heal.journalName Journal of Intelligent and Robotic Systems: Theory and Applications en
dc.identifier.doi 10.1023/B:JINT.0000049175.78893.2f en
dc.identifier.volume 41 en
dc.identifier.issue 1 en
dc.identifier.spage 19 en
dc.identifier.epage 36 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής