dc.contributor.author | Doulamis, N | en |
dc.contributor.author | Doulamis, A | en |
dc.date.accessioned | 2014-03-01T01:54:29Z | |
dc.date.available | 2014-03-01T01:54:29Z | |
dc.date.issued | 2005 | en |
dc.identifier.issn | 12300535 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/27405 | |
dc.relation.uri | http://www.scopus.com/inward/record.url?eid=2-s2.0-14644411728&partnerID=40&md5=52fc59af40b88ba00a4a08dac29ef1fc | en |
dc.subject | 3D rendering | en |
dc.subject | Grid computing | en |
dc.subject | Neural networks | en |
dc.subject.other | Algorithms | en |
dc.subject.other | Animation | en |
dc.subject.other | Computational methods | en |
dc.subject.other | Image processing | en |
dc.subject.other | Monte Carlo methods | en |
dc.subject.other | Neural networks | en |
dc.subject.other | Personal computers | en |
dc.subject.other | Personal digital assistants | en |
dc.subject.other | Problem solving | en |
dc.subject.other | Supercomputers | en |
dc.subject.other | 3D rendering | en |
dc.subject.other | Biological systems | en |
dc.subject.other | Grid computing | en |
dc.subject.other | Irradiance analysis | en |
dc.subject.other | Nonlinear systems | en |
dc.title | Non-linear prediction of rendering workload for grid infrastructure | en |
heal.type | journalArticle | en |
heal.publicationDate | 2005 | en |
heal.abstract | Grid computing clusters a wide variety of geographically distributed resources. As a result it can be considered as a promising platform for solving large scale intensive problems. For this reason, it can be viewed as one of the hottest issues in the computer society. A computational intensive application which can be gained from such a Grid infrastructure, is rendering, a process dealing with creating realistic computer-generated image and with many applications ranging from simulation to design and entertainment. To implement, however, a rendering process in a Grid infrastructure prediction of its computational complexity is required. In this paper, this is addressed by using several neural network modules, each of which is appropriate for a given rendering process. For this reason, a feature vector is constructed initially, to describe with high efficiency the parameters affecting the complexity of a rendering algorithm. The feature vector is estimated by parsing a file in a RIB format. Then, prediction is performed using a neural network model. Predictions for three types of rendering algorithms are examined; the ray tracing, the radiosity and the Monte Carlo irradiance analysis. | en |
heal.journalName | Machine Graphics and Vision | en |
dc.identifier.volume | 13 | en |
dc.identifier.issue | 1-2 | en |
dc.identifier.spage | 123 | en |
dc.identifier.epage | 135 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |