HEAL DSpace

Non-linear prediction of rendering workload for grid infrastructure

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Doulamis, N en
dc.contributor.author Doulamis, A en
dc.date.accessioned 2014-03-01T01:54:29Z
dc.date.available 2014-03-01T01:54:29Z
dc.date.issued 2005 en
dc.identifier.issn 12300535 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/27405
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-14644411728&partnerID=40&md5=52fc59af40b88ba00a4a08dac29ef1fc en
dc.subject 3D rendering en
dc.subject Grid computing en
dc.subject Neural networks en
dc.subject.other Algorithms en
dc.subject.other Animation en
dc.subject.other Computational methods en
dc.subject.other Image processing en
dc.subject.other Monte Carlo methods en
dc.subject.other Neural networks en
dc.subject.other Personal computers en
dc.subject.other Personal digital assistants en
dc.subject.other Problem solving en
dc.subject.other Supercomputers en
dc.subject.other 3D rendering en
dc.subject.other Biological systems en
dc.subject.other Grid computing en
dc.subject.other Irradiance analysis en
dc.subject.other Nonlinear systems en
dc.title Non-linear prediction of rendering workload for grid infrastructure en
heal.type journalArticle en
heal.publicationDate 2005 en
heal.abstract Grid computing clusters a wide variety of geographically distributed resources. As a result it can be considered as a promising platform for solving large scale intensive problems. For this reason, it can be viewed as one of the hottest issues in the computer society. A computational intensive application which can be gained from such a Grid infrastructure, is rendering, a process dealing with creating realistic computer-generated image and with many applications ranging from simulation to design and entertainment. To implement, however, a rendering process in a Grid infrastructure prediction of its computational complexity is required. In this paper, this is addressed by using several neural network modules, each of which is appropriate for a given rendering process. For this reason, a feature vector is constructed initially, to describe with high efficiency the parameters affecting the complexity of a rendering algorithm. The feature vector is estimated by parsing a file in a RIB format. Then, prediction is performed using a neural network model. Predictions for three types of rendering algorithms are examined; the ray tracing, the radiosity and the Monte Carlo irradiance analysis. en
heal.journalName Machine Graphics and Vision en
dc.identifier.volume 13 en
dc.identifier.issue 1-2 en
dc.identifier.spage 123 en
dc.identifier.epage 135 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής