dc.contributor.author |
Avdikos, GK |
en |
dc.contributor.author |
Anastassiu, HT |
en |
dc.contributor.author |
Vouldis, AT |
en |
dc.date.accessioned |
2014-03-01T01:54:29Z |
|
dc.date.available |
2014-03-01T01:54:29Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
11092742 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27412 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-24644454426&partnerID=40&md5=7a21faf80f80886ccb5c2016abbdf8c6 |
en |
dc.subject |
Electromagnetic scattering |
en |
dc.subject |
Impedance scatterers |
en |
dc.subject |
Method of Auxiliary Sources |
en |
dc.subject |
Radar cross section |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Computational geometry |
en |
dc.subject.other |
Cylinders (containers) |
en |
dc.subject.other |
Electromagnetic wave scattering |
en |
dc.subject.other |
Linear equations |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Mathematical transformations |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Perturbation techniques |
en |
dc.subject.other |
Auxiliary sources model |
en |
dc.subject.other |
Impedance scatterers |
en |
dc.subject.other |
Method of auxiliary sources |
en |
dc.subject.other |
Perturbed-circular cylinders |
en |
dc.subject.other |
Radar cross section |
en |
dc.title |
Radar cross section (RCS) computation of impedance, perturbed-circular cylinders based on an auxiliary sources model |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
An electromagnetic scattering analysis for infinite, coated conducting cylinders, with various geometrical cross sections, is performed on the basis of the Method of Auxiliary Sources (MAS), in conjunction with the Standard Impedance Boundary Condition (SIBC). A key point of the MAS accuracy and efficiency is the much-desired optimization of the auxiliary sources location. Unlike in the circular cylinder case, where this optimization can be carried out analytically, generic geometries are so far amenable only to numerical procedures. A set of cross sections, which can be considered as perturbations of the circle, are investigated, to assess the effect of gradual geometry transformation on the MAS boundary condition error and the linear system condition number. The monostatic RCS for the location of the auxiliary surface with optimum trade-off between error and condition number is plotted. The purpose of this study is the extraction of useful conclusions on the optimum location of the auxiliary sources for arbitrarily shaped impedance scatterers, and the facilitation of possible analytical optimization schemes in the future. |
en |
heal.journalName |
WSEAS Transactions on Communications |
en |
dc.identifier.volume |
4 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
1261 |
en |
dc.identifier.epage |
1267 |
en |