HEAL DSpace

Numerical simulation of diesel spray evaporation exploiting the "stabilized cool flame" phenomenon

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Founti, MA en
dc.contributor.author Kolaitis, DI en
dc.date.accessioned 2014-03-01T01:54:38Z
dc.date.available 2014-03-01T01:54:38Z
dc.date.issued 2005 en
dc.identifier.issn 1044-5110 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/27453
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Engineering, Chemical en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Materials Science, Multidisciplinary en
dc.subject.classification Physics, Applied en
dc.subject.other EXPERIMENTAL VALIDATION en
dc.subject.other LOW-TEMPERATURE en
dc.subject.other COMBUSTION en
dc.subject.other MODEL en
dc.subject.other FLOW en
dc.subject.other OXIDATION en
dc.subject.other REACTOR en
dc.title Numerical simulation of diesel spray evaporation exploiting the "stabilized cool flame" phenomenon en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2005 en
heal.abstract An alternative approach to enhance conventional liquid fuel evaporation can be based on the stabilized cool flame phenomenon. To demonstrate this, the present work numerically simulates the flow field inside an atmospheric-pressure cool flame reactor using a two-phase computational fluid dynamics code, based on the solution of the RANS equations. Such a reactor exploits the "stabilized cool flame" phenomenon, augmenting local evaporation rates and leading to a partially oxidised mixture that can he subsequent v burnt. A Eulerian-Lagrangian formulation is adopted for the description of the gas field and droplet motion equations, respectively, and a stochastic approach is implemented to account for the effects of turbulence on the droplet motion. Droplet evaporation is modeled with the use of an evaporation model incorporating the Stefan blowing effect. In addition, a semiempirical model developed especially for this purpose is used to model the heat release due to the exothermic cool flame reactions. Numerical simulations are presented for test cases with and without cool flame reactions and compared to available experimental data. The satisfactory agreement between experiments and predictions confirms the ability of the approach to simulate reasonably well the main phenomena observed in a cool flame reactor. en
heal.publisher BEGELL HOUSE INC en
heal.journalName ATOMIZATION AND SPRAYS en
dc.identifier.isi ISI:000227073700001 en
dc.identifier.volume 15 en
dc.identifier.issue 1 en
dc.identifier.spage 1 en
dc.identifier.epage 17 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής