HEAL DSpace

Some a priori error estimates with respect to H-theta norms, 0 <theta < 1, for the h-extension of the finite element method in tow dimensions

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Tsamasphyros, G en
dc.contributor.author Markolefas, S en
dc.date.accessioned 2014-03-01T01:54:47Z
dc.date.available 2014-03-01T01:54:47Z
dc.date.issued 2005 en
dc.identifier.issn 0168-9274 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/27465
dc.subject finite elements en
dc.subject h-extensions en
dc.subject a priori error estimates en
dc.subject fractional order norms en
dc.subject.classification Mathematics, Applied en
dc.subject.other RITZ-GALERKIN METHODS en
dc.subject.other P-VERSION en
dc.subject.other CONVERGENCE en
dc.subject.other SHARPNESS en
dc.title Some a priori error estimates with respect to H-theta norms, 0 <theta < 1, for the h-extension of the finite element method in tow dimensions en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2005 en
heal.abstract The error with respect to lower (fractional) order norms, \\*\\(theta), 0 < theta < 1, for the h-extension of the finite element method in 2-D, is studied and some new improved error estimates are deduced. In particular, it is shown that in polygonal domains, where the singularities dominate the regularity of the exact solution (e.g., u is an element of H1+delta-epsilon(Omega), For Allepsilon > 0, 0 < delta < 1), the optimal rate of convergence is recovered for theta > 1 - delta. Moreover, for 0 less than or equal to 1 - delta the deduced error upper bound has the same order as the classical error estimate with respect to L-2 norm (based upon the Aubin-Nitsche method). Finally, lower bound estimates of the form \\e(h)\\(theta) greater than or equal to C\\e(h)\\(2)(1), for some values of theta and positive definite unsymmetric bilinear functionals, are deduced. (C) 2004 IMACS. Published by Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName APPLIED NUMERICAL MATHEMATICS en
dc.identifier.isi ISI:000226566600007 en
dc.identifier.volume 52 en
dc.identifier.issue 4 en
dc.identifier.spage 449 en
dc.identifier.epage 458 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record