dc.contributor.author | Tsamasphyros, G | en |
dc.contributor.author | Markolefas, S | en |
dc.date.accessioned | 2014-03-01T01:54:47Z | |
dc.date.available | 2014-03-01T01:54:47Z | |
dc.date.issued | 2005 | en |
dc.identifier.issn | 0168-9274 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/27465 | |
dc.subject | finite elements | en |
dc.subject | h-extensions | en |
dc.subject | a priori error estimates | en |
dc.subject | fractional order norms | en |
dc.subject.classification | Mathematics, Applied | en |
dc.subject.other | RITZ-GALERKIN METHODS | en |
dc.subject.other | P-VERSION | en |
dc.subject.other | CONVERGENCE | en |
dc.subject.other | SHARPNESS | en |
dc.title | Some a priori error estimates with respect to H-theta norms, 0 <theta < 1, for the h-extension of the finite element method in tow dimensions | en |
heal.type | journalArticle | en |
heal.language | English | en |
heal.publicationDate | 2005 | en |
heal.abstract | The error with respect to lower (fractional) order norms, \\*\\(theta), 0 < theta < 1, for the h-extension of the finite element method in 2-D, is studied and some new improved error estimates are deduced. In particular, it is shown that in polygonal domains, where the singularities dominate the regularity of the exact solution (e.g., u is an element of H1+delta-epsilon(Omega), For Allepsilon > 0, 0 < delta < 1), the optimal rate of convergence is recovered for theta > 1 - delta. Moreover, for 0 less than or equal to 1 - delta the deduced error upper bound has the same order as the classical error estimate with respect to L-2 norm (based upon the Aubin-Nitsche method). Finally, lower bound estimates of the form \\e(h)\\(theta) greater than or equal to C\\e(h)\\(2)(1), for some values of theta and positive definite unsymmetric bilinear functionals, are deduced. (C) 2004 IMACS. Published by Elsevier B.V. All rights reserved. | en |
heal.publisher | ELSEVIER SCIENCE BV | en |
heal.journalName | APPLIED NUMERICAL MATHEMATICS | en |
dc.identifier.isi | ISI:000226566600007 | en |
dc.identifier.volume | 52 | en |
dc.identifier.issue | 4 | en |
dc.identifier.spage | 449 | en |
dc.identifier.epage | 458 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |