dc.contributor.author |
Aggelogiannaki, E |
en |
dc.contributor.author |
Sarimveis, H |
en |
dc.date.accessioned |
2014-03-01T01:54:50Z |
|
dc.date.available |
2014-03-01T01:54:50Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27492 |
|
dc.relation.uri |
http://www.akademik.unsri.ac.id/download/journal/files/waset/v1-2-17-6.pdf |
en |
dc.relation.uri |
http://www.waset.org/journals/waset/v22/v22-29.pdf |
en |
dc.subject |
Distributed Parameter System |
en |
dc.subject |
Empirical Model |
en |
dc.subject |
Nonlinear Model |
en |
dc.subject |
Partial Differential Equation |
en |
dc.subject |
Radial Basis Function |
en |
dc.subject |
rbf neural network |
en |
dc.subject |
Robust Control |
en |
dc.subject |
State Space |
en |
dc.subject |
Temperature Distribution |
en |
dc.subject |
Input Output |
en |
dc.subject |
Radial Basis Function Neural Network |
en |
dc.title |
Affine Radial Basis Function Neural Networks for the Robust Control of Hyperbolic Distributed Parameter Systems |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
In this work, a radial basis function (RBF) neural network is developed for the identification of hyperbolic distributed parameter systems (DPSs). This empirical model is based only on process input-output data and used for the estimation of the controlled variables at specific locations, without the need of online solution of partial differential equations (PDEs). The nonlinear model that is obtained |
en |