dc.contributor.author |
VASIOS, C |
en |
dc.contributor.author |
MATSOPOULOS, G |
en |
dc.date.accessioned |
2014-03-01T01:54:50Z |
|
dc.date.available |
2014-03-01T01:54:50Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27494 |
|
dc.relation.uri |
http://www.wseas.us/e-library/conferences/2006istanbul/papers/521-187.pdf |
en |
dc.subject |
Algebraic Reconstruction Technique |
en |
dc.subject |
Artificial Neural Network |
en |
dc.subject |
Autoregressive Model |
en |
dc.subject |
Back Propagation Algorithm |
en |
dc.subject |
Brain Mapping |
en |
dc.subject |
Cognitive Science |
en |
dc.subject |
Comparative Analysis |
en |
dc.subject |
event-related potential erp |
en |
dc.subject |
Feature Extraction |
en |
dc.subject |
Inverse Method |
en |
dc.subject |
Simulated Annealing |
en |
dc.subject |
Leave One Out Cross Validation |
en |
dc.subject |
Low Resolution |
en |
dc.subject |
Multi Layer Perceptron |
en |
dc.subject |
Normal Control |
en |
dc.subject |
Neural Network |
en |
dc.title |
An artificial neural network approach to the classification of inferred intracranial signals |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
Event-Related Potentials (ERPs) provide non invasive measurements of the electrical activity on the scalp that are linked to the presentation of stimuli and events. Brain mapping techniques are able to provide evidence on the solution of debatable issues in cognitive science. In this paper, an effective signal classification approach is proposed, extending the use of two inversion techniques: the Brain |
en |