dc.contributor.author |
Goussis, D |
en |
dc.contributor.author |
Valorani, M |
en |
dc.date.accessioned |
2014-03-01T01:54:50Z |
|
dc.date.available |
2014-03-01T01:54:50Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27497 |
|
dc.subject |
Asymptotic Analysis |
en |
dc.subject |
Efficient Algorithm |
en |
dc.subject |
Invariant Manifold |
en |
dc.subject |
Iterative Algorithm |
en |
dc.subject |
Model Reduction |
en |
dc.subject |
Model Simplification |
en |
dc.subject |
Multiple Time Scale |
en |
dc.subject |
Phase Space |
en |
dc.subject |
Singular Perturbation |
en |
dc.subject |
Time Scale |
en |
dc.subject |
Computational Singular Perturbation |
en |
dc.title |
An efficient iterative algorithm for the approximation of the fast and slow dynamics of stiff systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jcp.2005.09.019 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jcp.2005.09.019 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
The relation between the iterative algorithms based on the computational singular perturbation (CSP) and the invariance equation (IE) methods is examined. The success of the two methods is based on the appearance of fast and slow time scales in the dynamics of stiff systems. Both methods can identify the low-dimensional surface in the phase space (slow invariant manifold, SIM), where |
en |
heal.journalName |
Journal of Computational Physics |
en |
dc.identifier.doi |
10.1016/j.jcp.2005.09.019 |
en |