HEAL DSpace

Enhancing network traffic prediction and anomaly detection via statistical network traffic separation and combination strategies

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Jiang, J en
dc.contributor.author Papavassiliou, S en
dc.date.accessioned 2014-03-01T01:54:59Z
dc.date.available 2014-03-01T01:54:59Z
dc.date.issued 2006 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/27543
dc.subject Anomaly Detection en
dc.subject arma model en
dc.subject Data Filtering en
dc.subject Frequency Domain en
dc.subject Moving Average en
dc.subject Network Anomaly Detection en
dc.subject Network Monitoring en
dc.subject Network Traffic en
dc.subject Resource Allocation en
dc.subject Time Series en
dc.subject Traffic Analysis en
dc.subject Traffic Prediction en
dc.subject Dynamic Threshold en
dc.subject Low Frequency en
dc.subject Time Dependent en
dc.title Enhancing network traffic prediction and anomaly detection via statistical network traffic separation and combination strategies en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.comcom.2005.07.030 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.comcom.2005.07.030 en
heal.publicationDate 2006 en
heal.abstract In this paper, we propose, study and analyze a new network traffic prediction methodology, based on the ‘frequency domain’ traffic analysis and filtering, with the objective of enhancing the network anomaly detection capabilities. Based on this approach, the traffic can be effectively separated into a baseline component, that includes most of the low frequency traffic and presents low burstiness, and en
heal.journalName Computer Communications en
dc.identifier.doi 10.1016/j.comcom.2005.07.030 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής