dc.contributor.author |
Jiang, J |
en |
dc.contributor.author |
Papavassiliou, S |
en |
dc.date.accessioned |
2014-03-01T01:54:59Z |
|
dc.date.available |
2014-03-01T01:54:59Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27543 |
|
dc.subject |
Anomaly Detection |
en |
dc.subject |
arma model |
en |
dc.subject |
Data Filtering |
en |
dc.subject |
Frequency Domain |
en |
dc.subject |
Moving Average |
en |
dc.subject |
Network Anomaly Detection |
en |
dc.subject |
Network Monitoring |
en |
dc.subject |
Network Traffic |
en |
dc.subject |
Resource Allocation |
en |
dc.subject |
Time Series |
en |
dc.subject |
Traffic Analysis |
en |
dc.subject |
Traffic Prediction |
en |
dc.subject |
Dynamic Threshold |
en |
dc.subject |
Low Frequency |
en |
dc.subject |
Time Dependent |
en |
dc.title |
Enhancing network traffic prediction and anomaly detection via statistical network traffic separation and combination strategies |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.comcom.2005.07.030 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.comcom.2005.07.030 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
In this paper, we propose, study and analyze a new network traffic prediction methodology, based on the ‘frequency domain’ traffic analysis and filtering, with the objective of enhancing the network anomaly detection capabilities. Based on this approach, the traffic can be effectively separated into a baseline component, that includes most of the low frequency traffic and presents low burstiness, and |
en |
heal.journalName |
Computer Communications |
en |
dc.identifier.doi |
10.1016/j.comcom.2005.07.030 |
en |