HEAL DSpace

EVOLUTIONARY ALGORITHMS WITH SURROGATE MODELING FOR COMPUTATIONALLY EXPENSIVE OPTIMIZATION PROBLEMS

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Giannakoglou, K en
dc.contributor.author Karakasis, M en
dc.contributor.author Kampolis, I en
dc.date.accessioned 2014-03-01T01:55:01Z
dc.date.available 2014-03-01T01:55:01Z
dc.date.issued 2006 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/27550
dc.relation.uri http://147.102.55.162/research/pdfs/3_080.pdf en
dc.relation.uri http://velos0.ltt.mech.ntua.gr/research/pdfs/3_080.pdf en
dc.subject Approximation Error en
dc.subject Design Optimization en
dc.subject Evaluation Model en
dc.subject Evolutionary Algorithm en
dc.subject Industrial Application en
dc.subject Large Scale en
dc.subject Literature Survey en
dc.subject Optimization Problem en
dc.title EVOLUTIONARY ALGORITHMS WITH SURROGATE MODELING FOR COMPUTATIONALLY EXPENSIVE OPTIMIZATION PROBLEMS en
heal.type journalArticle en
heal.publicationDate 2006 en
heal.abstract optimization tools that utilize Evolutionary Algorithms (EAs) as the core search tool gained particular attention and reached a certain level of maturity. These tools enabled the extensive use of EAs in large-scale industrial applications, in which the analysis (evaluation) tool is computationally expensive. A literature survey reveals that the majority of new, promising variants of EAs are conceptually based on en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής