dc.contributor.author |
Giannakoglou, K |
en |
dc.contributor.author |
Karakasis, M |
en |
dc.contributor.author |
Kampolis, I |
en |
dc.date.accessioned |
2014-03-01T01:55:01Z |
|
dc.date.available |
2014-03-01T01:55:01Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27550 |
|
dc.relation.uri |
http://147.102.55.162/research/pdfs/3_080.pdf |
en |
dc.relation.uri |
http://velos0.ltt.mech.ntua.gr/research/pdfs/3_080.pdf |
en |
dc.subject |
Approximation Error |
en |
dc.subject |
Design Optimization |
en |
dc.subject |
Evaluation Model |
en |
dc.subject |
Evolutionary Algorithm |
en |
dc.subject |
Industrial Application |
en |
dc.subject |
Large Scale |
en |
dc.subject |
Literature Survey |
en |
dc.subject |
Optimization Problem |
en |
dc.title |
EVOLUTIONARY ALGORITHMS WITH SURROGATE MODELING FOR COMPUTATIONALLY EXPENSIVE OPTIMIZATION PROBLEMS |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
optimization tools that utilize Evolutionary Algorithms (EAs) as the core search tool gained particular attention and reached a certain level of maturity. These tools enabled the extensive use of EAs in large-scale industrial applications, in which the analysis (evaluation) tool is computationally expensive. A literature survey reveals that the majority of new, promising variants of EAs are conceptually based on |
en |