dc.contributor.author |
Buric, M |
en |
dc.contributor.author |
Grammatikopoulos, T |
en |
dc.contributor.author |
Madore, J |
en |
dc.contributor.author |
Zoupanos, G |
en |
dc.date.accessioned |
2014-03-01T01:55:03Z |
|
dc.date.available |
2014-03-01T01:55:03Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27569 |
|
dc.subject |
Differential Calculus |
en |
dc.subject |
Minkowski Space |
en |
dc.subject |
Moving Frames |
en |
dc.title |
Gravity and the Structure of Noncommutative Algebras |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/1126-6708/2006/04/054 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/1126-6708/2006/04/054 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
A gravitational field can be defined in terms of a moving frame, which whenmade noncommutative yields a preferred basis for a differential calculus. It isconjectured that to a linear perturbation of the commutation relations whichdefine the algebra there corresponds a linear perturbation of the gravitationalfield. This is shown to be true in the case of a |
en |
dc.identifier.doi |
10.1088/1126-6708/2006/04/054 |
en |