dc.contributor.author |
Agranoff, D |
en |
dc.contributor.author |
Fernandez-Reyes, D |
en |
dc.contributor.author |
Papadopoulos, M |
en |
dc.contributor.author |
Rojas, S |
en |
dc.contributor.author |
Herbster, M |
en |
dc.contributor.author |
Loosemore, A |
en |
dc.contributor.author |
Tarelli, E |
en |
dc.contributor.author |
Sheldon, J |
en |
dc.contributor.author |
Schwenk, A |
en |
dc.contributor.author |
Pollok, R |
en |
dc.contributor.author |
Rayner, C |
en |
dc.contributor.author |
Krishna, S |
en |
dc.date.accessioned |
2014-03-01T01:55:03Z |
|
dc.date.available |
2014-03-01T01:55:03Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27574 |
|
dc.relation.uri |
http://www.cs.ucl.ac.uk/staff/S.Rojas/index_files/2006_Lancet.pdf |
en |
dc.subject |
C Reactive Protein |
en |
dc.subject |
Clinical Feature |
en |
dc.subject |
Correlation Analysis |
en |
dc.subject |
Diagnostic Accuracy |
en |
dc.subject |
Diagnostic Test |
en |
dc.subject |
k-fold cross validation |
en |
dc.subject |
Mass Spectrometry |
en |
dc.subject |
Pattern Recognition |
en |
dc.subject |
Random Sampling |
en |
dc.subject |
Supervised Machine Learning |
en |
dc.subject |
Support Vector Machine |
en |
dc.subject |
Tuberculosis |
en |
dc.subject |
Mass Spectrometric |
en |
dc.subject |
serum amyloid a protein |
en |
dc.title |
Identifi cation of diagnostic markers for tuberculosis by proteomic fi ngerprinting of serum |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
Summary Background We investigated the potential of proteomic fi ngerprinting with mass spectrometric serum profi ling, coupled with pattern recognition methods, to identify biomarkers that could improve diagnosis of tuberculosis. Methods We obtained serum proteomic profi les from patients with active tuberculosis and controls by surface-enhanced laser desorption ionisation time of fl ight mass spectrometry. A supervised machine-learning approach based |
en |