dc.contributor.author |
Georgiou, V |
en |
dc.contributor.author |
Pavlidis, N |
en |
dc.contributor.author |
Parsopoulos, K |
en |
dc.contributor.author |
Alevizos, P |
en |
dc.contributor.author |
Vrahatis, M |
en |
dc.date.accessioned |
2014-03-01T01:55:08Z |
|
dc.date.available |
2014-03-01T01:55:08Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27611 |
|
dc.subject |
particle swarm optimizer |
en |
dc.subject |
Probabilistic Neural Network |
en |
dc.subject |
Protein Localization |
en |
dc.subject |
Sampling Technique |
en |
dc.subject |
Statistical Test |
en |
dc.subject |
Support Vector Machine |
en |
dc.subject |
Feedforward Neural Network |
en |
dc.title |
New Self-adaptive Probabilistic Neural Networks in Bioinformatic and Medical Tasks |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1142/S0218213006002722 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1142/S0218213006002722 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
We propose a self{adaptive probabilistic neural network model, which incorporates op- timization algorithms to determine its spread parameters. The performance of the pro- posed model is investigated on two protein localization problems, as well as on two medical diagnostic tasks. Experimental results are compared with that of feedforward neural networks and support vector machines. Dieren t sampling techniques are used |
en |
heal.journalName |
International Journal on Artificial Intelligence Tools |
en |
dc.identifier.doi |
10.1142/S0218213006002722 |
en |