dc.contributor.author |
COLETSOS, J |
en |
dc.contributor.author |
KOKKINIS, B |
en |
dc.date.accessioned |
2014-03-01T01:55:09Z |
|
dc.date.available |
2014-03-01T01:55:09Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27623 |
|
dc.relation.uri |
http://www.wseas.us/e-library/conferences/2006lisbon/papers/517-275.pdf |
en |
dc.relation.uri |
http://www.labplan.ufsc.br/congressos/wseas/papers/517-275.pdf |
en |
dc.subject |
Elliptic Partial Differential Equation |
en |
dc.subject |
Gradient Projection Method |
en |
dc.subject |
Nonlinear Elliptic System |
en |
dc.subject |
Numerical Solution |
en |
dc.subject |
Optimal Control |
en |
dc.subject |
Optimal Control Problem |
en |
dc.subject |
Optimal Method |
en |
dc.subject |
State Constraints |
en |
dc.title |
Optimization Methods for Optimal Control of Nonlinear Elliptic Systems |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
We consider an optimal control problem for systems governed by a highly nonlinear second order elliptic partial differential equation, with control and state constraints. The problem is formulated in the classical and in the relaxed form, and various necessary conditions for optimality are given. For the numerical solution of these problems, we propose a penalized gradient projection method generating classical |
en |