dc.contributor.author |
Fotakis, D |
en |
dc.contributor.author |
Nikoletseas, S |
en |
dc.contributor.author |
Papadopoulou, V |
en |
dc.contributor.author |
Spirakis, P |
en |
dc.date.accessioned |
2014-03-01T01:55:11Z |
|
dc.date.available |
2014-03-01T01:55:11Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27638 |
|
dc.subject |
Approximate Algorithm |
en |
dc.subject |
Computational Complexity |
en |
dc.subject |
Frequency Assignment |
en |
dc.subject |
Graph Coloring Problem |
en |
dc.subject |
Maximum Degree |
en |
dc.subject |
Planar Graph |
en |
dc.subject |
Radio Networks |
en |
dc.subject |
Satisfiability |
en |
dc.subject |
Frequency Assignment Problem |
en |
dc.title |
Radiocolorings in periodic planar graphs: PSPACE-completeness and efficient approximations for the optimal range of frequencies |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jda.2005.12.007 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jda.2005.12.007 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
The Frequency Assignment Problem (FAP) in radio networks is the problem of assigning frequencies to transmitters exploiting frequency reuse while keeping signal interference to acceptable levels. The FAP is usually modelled by variations of the graph coloring problem. A Radiocoloring (RC) of a graph G(V,E) is an assignment function Λ:V→N such that |Λ(u)−Λ(v)|⩾2, when u,v are neighbors in G, and |
en |
heal.journalName |
Journal of Discrete Algorithms |
en |
dc.identifier.doi |
10.1016/j.jda.2005.12.007 |
en |