dc.contributor.author |
Androulidakis, A |
en |
dc.contributor.author |
Nielsen, AD |
en |
dc.contributor.author |
Prentza, A |
en |
dc.contributor.author |
Koutsouris, D |
en |
dc.date.accessioned |
2014-03-01T01:55:19Z |
|
dc.date.available |
2014-03-01T01:55:19Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
09287329 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27687 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-33748482656&partnerID=40&md5=e7998d9f8faa6dbcade937d0bce92c3e |
en |
dc.subject |
Causal probabilistic networks |
en |
dc.subject |
Decision support systems |
en |
dc.subject |
Distributed computing |
en |
dc.subject |
Parallel algorithms |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
antibiotic therapy |
en |
dc.subject.other |
article |
en |
dc.subject.other |
decision making |
en |
dc.subject.other |
decision support system |
en |
dc.subject.other |
human |
en |
dc.subject.other |
mathematical computing |
en |
dc.subject.other |
medical error |
en |
dc.subject.other |
performance measurement system |
en |
dc.subject.other |
physician |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
system analysis |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computer Systems |
en |
dc.subject.other |
Decision Support Systems, Clinical |
en |
dc.subject.other |
Efficiency, Organizational |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Neural Networks (Computer) |
en |
dc.subject.other |
Software |
en |
dc.subject.other |
Systems Integration |
en |
dc.subject.other |
Time Factors |
en |
dc.title |
A distributed environment for the integration of multiple high-performance decision support systems into clinical workflow |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
Current studies conclude that clinical decision support systems can help reduce serious medical errors. The importance of Causal Probabilistic Networks (CPNs) for constructing such systems is already well-known. However, the computational complexity of probabilistic inference, which results in unacceptably high response times, can hinder acceptance and integration into clinician workflow. This paper investigates the optimization and parallelization potential of complex CPN-based medical decision support systems and evaluates the results of implementing a parallel, high performance version of an existing decision support system concerning proper antibiotic treatment therapy. Furthermore, it discusses distributed computing techniques for making multiple high performance decision support systems available at the time and location of decision making, by exploiting computing resources residing inside, as well as outside the hospital walls optimally. © 2006 - IOS Press and the authors. All rights reserved. |
en |
heal.journalName |
Technology and Health Care |
en |
dc.identifier.volume |
14 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
157 |
en |
dc.identifier.epage |
170 |
en |