HEAL DSpace

Discretization-optimization methods for relaxed optimal control of nonlinear parabolic systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chryssoverghi, I en
dc.date.accessioned 2014-03-01T01:55:23Z
dc.date.available 2014-03-01T01:55:23Z
dc.date.issued 2006 en
dc.identifier.issn 11092769 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/27711
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-37849189187&partnerID=40&md5=116468fc1afd3b4ccfc30aad1265dabf en
dc.subject Discrete penalized conditional descent method en
dc.subject Discretization en
dc.subject Finite elements en
dc.subject Nonlinear parabolic systems en
dc.subject Optimal control en
dc.subject Optimality conditions en
dc.subject Progressive refining en
dc.subject Relaxed controls en
dc.subject State constraints en
dc.subject Theta-scheme en
dc.subject.other Finite element method en
dc.subject.other Nonlinear systems en
dc.subject.other Optimal control systems en
dc.subject.other Partial differential equations en
dc.subject.other Discretization en
dc.subject.other Nonlinear parabolic systems en
dc.subject.other Relaxed controls en
dc.subject.other State constraints en
dc.subject.other Theta-scheme en
dc.subject.other Optimization en
dc.title Discretization-optimization methods for relaxed optimal control of nonlinear parabolic systems en
heal.type journalArticle en
heal.publicationDate 2006 en
heal.abstract An optimal control problem is considered, for systems described by a parabolic partial differential equation, jointly nonlinear in the state and control variables, with control and state constraints. Since no convexity assumptions are made on the data, this problem may have no classical solutions, and thus it is reformulated in the relaxed form. The relaxed problem is discretized by using a finite element method in space and an implicit theta-scheme in time, while the controls are approximated by blockwise constant relaxed controls. Necessary and sufficient conditions for optimality are given for the relaxed problem, in the continuous and discrete cases. Results are obtained on the behavior in the limit of discrete optimality, and of discrete admissibility and extremality. In addition, we propose a penalized conditional descent method, applied to the discrete relaxed problem, and a progressively refining version of this method, applied to the continuous relaxed problem, that reduces computing time and memory. The behavior in the limit of sequences constructed by these methods is examined. Finally, numerical examples are given. en
heal.journalName WSEAS Transactions on Mathematics en
dc.identifier.volume 5 en
dc.identifier.issue 11 en
dc.identifier.spage 1153 en
dc.identifier.epage 1160 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής