dc.contributor.author |
Guskos, N |
en |
dc.contributor.author |
Glenis, S |
en |
dc.contributor.author |
Likodimos, V |
en |
dc.contributor.author |
Typek, J |
en |
dc.contributor.author |
Maryniak, M |
en |
dc.contributor.author |
Roslaniec, Z |
en |
dc.contributor.author |
Kwiatkowska, M |
en |
dc.contributor.author |
Baran, M |
en |
dc.contributor.author |
Szymczak, R |
en |
dc.contributor.author |
Petridis, D |
en |
dc.date.accessioned |
2014-03-01T01:55:26Z |
|
dc.date.available |
2014-03-01T01:55:26Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
00218979 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27729 |
|
dc.subject.other |
Copolymers |
en |
dc.subject.other |
Magnetization |
en |
dc.subject.other |
Molecular dynamics |
en |
dc.subject.other |
Morphology |
en |
dc.subject.other |
Nanostructured materials |
en |
dc.subject.other |
Dispersion states |
en |
dc.subject.other |
Ferromagnetic resonance (FMR) |
en |
dc.subject.other |
Interparticle interactions |
en |
dc.subject.other |
Matrix freezing |
en |
dc.subject.other |
Ferrimagnetic materials |
en |
dc.title |
Matrix effects on the magnetic properties of γ- Fe2 O3 nanoparticles dispersed in a multiblock copolymer |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1063/1.2189216 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1063/1.2189216 |
en |
heal.identifier.secondary |
084307 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
The magnetic properties of γ- Fe2 O3 ferrimagnetic nanoparticles embedded in a multiblock poly(ether-ester) copolymer have been investigated by static magnetization and ferromagnetic resonance (FMR) measurements at two different dispersion states. Significant variation of the magnetic response is identified below T≈120 K, most pronounced in the marked resonance field shift of the FMR spectra, independently of the dispersion state of the nanocomposites. This behavior correlates favorably with the dynamic relaxation of the copolymer, indicating a matrix freezing effect that is attributed to the magnetoelastic coupling of the oxide nanoparticles with the surrounding polymer. At low temperatures, the dc magnetization and FMR measurements vary considerably for the two nanocomposites, indicating essential differences in their ground state, related to the different morphology of the samples and the concomitant variation of interparticle interactions. © 2006 American Institute of Physics. |
en |
heal.journalName |
Journal of Applied Physics |
en |
dc.identifier.doi |
10.1063/1.2189216 |
en |
dc.identifier.volume |
99 |
en |
dc.identifier.issue |
8 |
en |