dc.contributor.author |
Coletsos, J |
en |
dc.contributor.author |
Kokkinis, B |
en |
dc.date.accessioned |
2014-03-01T01:55:27Z |
|
dc.date.available |
2014-03-01T01:55:27Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
11092769 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27734 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-37849189822&partnerID=40&md5=5583fd2a8114ff27ffa6bc08ce0c2d2d |
en |
dc.subject |
Classical penalized gradient projection method |
en |
dc.subject |
Nonlinear elliptic systems |
en |
dc.subject |
Optimal control |
en |
dc.subject |
Optimality conditions |
en |
dc.subject |
Relaxed controls |
en |
dc.subject |
Relaxed penalized conditional descent method |
en |
dc.subject |
State constraints |
en |
dc.subject.other |
Nonlinear systems |
en |
dc.subject.other |
Optimal control systems |
en |
dc.subject.other |
Partial differential equations |
en |
dc.subject.other |
Classical penalized gradient projection method |
en |
dc.subject.other |
Nonlinear elliptic systems |
en |
dc.subject.other |
Relaxed controls |
en |
dc.subject.other |
Relaxed penalized conditional descent method |
en |
dc.subject.other |
State constraints |
en |
dc.subject.other |
Optimization |
en |
dc.title |
Optimization methods for nonlinear elliptic optimal control problems with state constraints |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
An optimal control problem is considered, for systems governed by a highly nonlinear second order elliptic partial differential equation, with control and state constraints. The problem is formulated in the classical and in the relaxed form. Various necessary/sufficient conditions for optimality are given for both formulations. For the numerical solution of these problems, we propose a penalized gradient projection method generating classical controls and a penalized conditional descent method generating relaxed controls. Using also relaxation theory, the behavior in the limit of sequences constructed by these methods is examined. Finally, numerical examples are given. |
en |
heal.journalName |
WSEAS Transactions on Mathematics |
en |
dc.identifier.volume |
5 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
1169 |
en |
dc.identifier.epage |
1176 |
en |