dc.contributor.author |
Papadopoulos, PG |
en |
dc.contributor.author |
Stavrakakis, NM |
en |
dc.date.accessioned |
2014-03-01T01:55:29Z |
|
dc.date.available |
2014-03-01T01:55:29Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
10726691 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27752 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-33746079963&partnerID=40&md5=aa419bdcfe9cd4dc00161b89cb479bc5 |
en |
dc.subject |
Generalized Sobolev spaces |
en |
dc.subject |
Global attractor |
en |
dc.subject |
Kirchhoff strings |
en |
dc.subject |
Quasilinear hyperbolic equations |
en |
dc.subject |
Unbounded domains |
en |
dc.subject |
Weighted Lp spaces |
en |
dc.title |
Strong global attractor for a quasilinear nonlocal wave equation on ℝN |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
We study the long time behavior of solutions to the nonlocal quasi-linear dissipative wave equation utt - φ(x)∥▽u(t)∥ 2Δu + δut + |u|a = 0, in ℝN, t ≥ 0, with initial conditions u(x,0) = u0(x) and ut(x,0) = u1(x). We consider the case N ≥ 3, δ > 0, and (φ(x))-1 a positive function in L N/2(ℝN) ∩ L∞ (ℝ N). The existence of a global attractor is proved in the strong topology of the space D1,2(ℝN) × L 92(ℝN). © 2006 Texas State University. |
en |
heal.journalName |
Electronic Journal of Differential Equations |
en |
dc.identifier.volume |
2006 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
10 |
en |