HEAL DSpace

The computation of flow and heat transfer through an orthogonally rotating square-ended U-bend, using low-Reynolds-number models

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Nikas, K-SP en
dc.contributor.author Iacovides, H en
dc.date.accessioned 2014-03-01T01:55:29Z
dc.date.available 2014-03-01T01:55:29Z
dc.date.issued 2006 en
dc.identifier.issn 09615539 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/27756
dc.subject Flow en
dc.subject Heat transfer en
dc.subject Rotational motion en
dc.subject Turbulent flow en
dc.subject.other Heat transfer en
dc.subject.other Mathematical models en
dc.subject.other Pipe flow en
dc.subject.other Reynolds number en
dc.subject.other Turbulence en
dc.subject.other Turbulent flow en
dc.subject.other Viscosity en
dc.subject.other Curvature en
dc.subject.other Reynolds-number models en
dc.subject.other Rotational motion en
dc.subject.other U-bends en
dc.subject.other Pipeline bends en
dc.subject.other Heat transfer en
dc.subject.other Mathematical models en
dc.subject.other Pipe flow en
dc.subject.other Pipeline bends en
dc.subject.other Reynolds number en
dc.subject.other Turbulence en
dc.subject.other Turbulent flow en
dc.subject.other Viscosity en
dc.title The computation of flow and heat transfer through an orthogonally rotating square-ended U-bend, using low-Reynolds-number models en
heal.type journalArticle en
heal.identifier.primary 10.1108/09615530610683539 en
heal.identifier.secondary http://dx.doi.org/10.1108/09615530610683539 en
heal.publicationDate 2006 en
heal.abstract Purpose - To assess how effectively two-layer and low-Reynolds-number models of turbulence, at effective viscosity and second-moment closure level, can predict the flow and thermal development through orthogonally rotating U-bends. Design/methodology/approach - Heat and fluid flow computations through a square-ended U-bend that rotates about an axis normal to both the main flow direction and also the axis of curvature have been carried out. Two-layer and low-Reynolds-number mathematical models of turbulence are used at effective viscosity (EVM) level and also at second-moment-closure (DSM) level. In the two-layer models the dissipation rate of turbulence in the new-wall regions is obtained from the wall distance, while in the low-Re models the transport equation for the dissipation rate is extended right up to the walls. Moreover, two length-scale correction terms to the dissipation rate of turbulence are used with the low-Re models, and original Yap term and a differential form that does not require the wall distance (NYap). The resulting predictions are compared with available flow measurements at a Reynolds number of 100,000 and a rotation number (ΩD/Ubl) of 0.2 and also with heat transfer measurements at a Reynolds number of 36,000, rotation number of 0.2 and Prandtl number of 5.9 (water). Findings - While the main flow features are well reproduced by all models, the development of the mean flow within the just after the bend in better reproduced by the low-Re models. Turbulence levels within the rotation U-bend are under-predicted, but DSM models produce a more realistic distribution. Along the leading side all models over-predict heat transfer levels just after the bend. Along the trailing side, the heat transfer predictions of the fully low-Re DSM with the differential length-scale correction term NYap are close to the measurements, with an average error of around 10 per cent, though at the bend exit it rises to 25 per cent. The introduction of a differential form of the length-scale correction term to improve the heat transfer predictions of both low-Re models. Research/limitations/implications - The numerical models assumed that the flow remains steady and is not affected by large-scale, low frequency fluctuations. Unsteady RANS computations or LES must also be tested in the future. Originality/value - This work has expanded the range of complex turbulent flow over which the effectiveness of RANS models has been tested, to internal cooling flows simultaneously affected by orthogonal rotation and strong curvature. © Emerald Group Publishing Limited. en
heal.journalName International Journal of Numerical Methods for Heat and Fluid Flow en
dc.identifier.doi 10.1108/09615530610683539 en
dc.identifier.volume 16 en
dc.identifier.issue 7 en
dc.identifier.spage 827 en
dc.identifier.epage 844 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής