HEAL DSpace

Single-objective and multiobjective evolutionary optimization assisted by Gaussian random field metamodels

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Emmerich, MTM en
dc.contributor.author Giannakoglou, KC en
dc.contributor.author Naujoks, B en
dc.date.accessioned 2014-03-01T01:55:42Z
dc.date.available 2014-03-01T01:55:42Z
dc.date.issued 2006 en
dc.identifier.issn 1089-778X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/27810
dc.subject evolutionary optimization en
dc.subject Gaussian random field models en
dc.subject Kriging en
dc.subject metamodeling en
dc.subject multiobjective design optimization en
dc.subject uncertainty prediction en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other ALGORITHMS en
dc.subject.other MODELS en
dc.title Single-objective and multiobjective evolutionary optimization assisted by Gaussian random field metamodels en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2006 en
heal.abstract This paper presents and analyzes in detail an efficient search method based on evolutionary algorithms (EA) assisted by local Gaussian random field metamodels; (GRFM). It is created for the use in optimization problems with one (or many) computationally expensive evaluation function(s). The role of GRFM is to predict objective function values for new candidate solutions by exploiting information recorded during previous evaluations. Moreover, GRIM are able to provide estimates of the confidence of their predictions. Predictions and their confidence intervals predicted by GRFM are used by the metamodel assisted EA. It selects the promising members in each generation and carries out exact, costly evaluations only for them. The extensive use of the uncertainty information of predictions for screening the candidate solutions makes it possible to significantly reduce the computational cost of singleand multiobjective EA. This is adequately demonstrated in this paper by means of mathematical test cases and a multipoint air-foil design in aerodynamics. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION en
dc.identifier.isi ISI:000239475600005 en
dc.identifier.volume 10 en
dc.identifier.issue 4 en
dc.identifier.spage 421 en
dc.identifier.epage 439 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής