dc.contributor.author |
Caussanel, M |
en |
dc.contributor.author |
Schrimpf, R |
en |
dc.contributor.author |
Tsetseris, L |
en |
dc.contributor.author |
Evans, M |
en |
dc.contributor.author |
Pantelides, S |
en |
dc.date.accessioned |
2014-03-01T01:55:58Z |
|
dc.date.available |
2014-03-01T01:55:58Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27890 |
|
dc.subject |
Circuit Simulation |
en |
dc.subject |
Density Function Theory |
en |
dc.subject |
Device Modeling |
en |
dc.subject |
Experimental Data |
en |
dc.subject |
i-v characteristic |
en |
dc.subject |
Molecular Electronics |
en |
dc.subject |
Quantum Mechanics |
en |
dc.title |
Engineering model of a biased metal–molecule–metal junction |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10825-007-0151-9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10825-007-0151-9 |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
Molecular electronic devices show promise for future applications, but assessment of their utility is limited by the lack of physically based engineering models. In this paper, quantum-mechanical results obtained with density-functional theory (DFT) are used as a starting point to construct an efficient device-level model of a prototype molecular electronic device consisting of a metal/benzene-1,4-dithiolate/metal junction. This model is based |
en |
heal.journalName |
Journal of Computational Electronics |
en |
dc.identifier.doi |
10.1007/s10825-007-0151-9 |
en |