dc.contributor.author |
RASSIAS, T |
en |
dc.date.accessioned |
2014-03-01T01:55:59Z |
|
dc.date.available |
2014-03-01T01:55:59Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27897 |
|
dc.relation.uri |
http://files.ele-math.com/abstracts/jmi-01-43-abs.pdf |
en |
dc.subject |
banach space |
en |
dc.subject |
Fixed Point |
en |
dc.subject |
Functional Equation |
en |
dc.subject |
generalized hyers-ulam stability |
en |
dc.subject |
Quadratic Functional Equation |
en |
dc.subject |
Satisfiability |
en |
dc.subject |
Vector Space |
en |
dc.title |
FIXED POINTS AND GENERALIZED HYERS-ULAM STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
Let X,Y be complex vector spaces. It is shown that if a mapping f : X → Y satisfies f (x + iy )+ f (x − iy )= 2f (x) − 2f (y )( 0.1) or f (x + iy) − f (ix + y )= 2f (x) − 2f (y )( 0.2) for all x,y ∈ X , |
en |