dc.contributor.author |
Bartosiewicz, Z |
en |
dc.contributor.author |
Girejko, E |
en |
dc.contributor.author |
Aubin, P |
en |
dc.contributor.author |
Frankowska, H |
en |
dc.contributor.author |
Rze, T |
en |
dc.contributor.author |
Plaskacz, S |
en |
dc.contributor.author |
Clarke, F |
en |
dc.contributor.author |
Ledyaev, S |
en |
dc.contributor.author |
Papageorgiou, N |
en |
dc.contributor.author |
Hu, S |
en |
dc.contributor.author |
Tallos, P |
en |
dc.date.accessioned |
2014-03-01T01:55:59Z |
|
dc.date.available |
2014-03-01T01:55:59Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27905 |
|
dc.relation.uri |
http://katmat.pb.bialystok.pl/mat/barz/ECC.pdf |
en |
dc.subject |
Differential Equation |
en |
dc.subject |
Differential Inclusion |
en |
dc.subject |
Global Solution |
en |
dc.subject |
Indexing Terms |
en |
dc.subject |
Necessary and Sufficient Condition |
en |
dc.subject |
set-valued mapping |
en |
dc.subject |
Cauchy Problem |
en |
dc.subject |
Right Hand Side |
en |
dc.title |
GDQ Criteria of Viability for Differential Inclusions |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
The viability problem for differential inclusions is studied. It is assumed that the right-hand side of the differential inclusion is given by a multifunction (an orientor field) defined by the graph of another multifunction (called a constraint multifunction), which depends on time. We use Generalized Differential Quotients as a differentiation tool in tangential condition. We assume that the constraint multifunction |
en |