dc.contributor.author |
Stavrakakis, N |
en |
dc.contributor.author |
Papadopoulos, P |
en |
dc.date.accessioned |
2014-03-01T01:55:59Z |
|
dc.date.available |
2014-03-01T01:55:59Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27909 |
|
dc.subject |
Blow Up |
en |
dc.subject |
Degeneration |
en |
dc.subject |
Global Existence |
en |
dc.subject |
Global Solution |
en |
dc.subject |
Initial Condition |
en |
dc.subject |
Quasilinear Hyperbolic Equation |
en |
dc.subject |
Unbounded Domain |
en |
dc.subject |
Wave Equation |
en |
dc.title |
Global existence for a wave equation on $R^n$ |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.3934/dcdss.2008.1.139 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.3934/dcdss.2008.1.139 |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
We study on the initial-bountary value problem for some degenerate non-linear dissipative wave equations of Kirchho type: utt (x)|| 5 u(t)|| 2 u + u t = f(u), x 2 IR N , t 0, with initial conditions u(x,0) = u0(x) and ut(x,0) = u1(x), in the case where N 3, > 0, 1, f(u) = |u| a u with |
en |
heal.journalName |
Discrete and Continuous Dynamical Systems - Series S |
en |
dc.identifier.doi |
10.3934/dcdss.2008.1.139 |
en |