dc.contributor.author |
Spyrou, E |
en |
dc.contributor.author |
Avrithis, Y |
en |
dc.date.accessioned |
2014-03-01T01:56:00Z |
|
dc.date.available |
2014-03-01T01:56:00Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27913 |
|
dc.relation.uri |
http://www.informatik.uni-trier.de/~ley/db/series/faia/faia160.html#SpyrouA07 |
en |
dc.relation.uri |
http://www.image.ece.ntua.gr/papers/498.pdf |
en |
dc.subject |
Clustering Method |
en |
dc.subject |
Feature Detection |
en |
dc.subject |
Feature Extraction |
en |
dc.subject |
Feature Vector |
en |
dc.subject |
Latent Semantic Analysis |
en |
dc.subject |
Texture Features |
en |
dc.title |
High-Level Concept Detection in Video Using a Region Thesaurus |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
This work presents an approach on high-level semantic feature detec- tion in video sequences. Keyframes are selected to represent the visual content of the shots. Then, low-level feature extraction is performed on the keyframes and a feature vector including color and texture features is formed. A region thesaurus that contains all the high-level features is constructed using a subtractive clustering |
en |