dc.contributor.author |
Hadjisavvas, G |
en |
dc.contributor.author |
Tsetseris, L |
en |
dc.contributor.author |
Pantelides, S |
en |
dc.date.accessioned |
2014-03-01T01:56:14Z |
|
dc.date.available |
2014-03-01T01:56:14Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28013 |
|
dc.subject |
First Principle |
en |
dc.subject |
Interface Model |
en |
dc.subject |
Mobility Model |
en |
dc.subject |
Quantum Mechanics |
en |
dc.title |
The Origin of Electron Mobility Enhancement in Strained MOSFETs |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/LED.2007.906471 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/LED.2007.906471 |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
Straining Si MOS structures has been known to enhance electron mobilities. However, the origin of the effect has remained elusive as conventional modeling can only account for it by large ad hoc reduction of macroscopic interface roughness. Here, we report first-principle fully quantum-mechanical mobility calculations based on an atomic-scale interface model. Wave-function penetration into an oxide is automatically included. The |
en |
heal.journalName |
IEEE Electron Device Letters |
en |
dc.identifier.doi |
10.1109/LED.2007.906471 |
en |