HEAL DSpace

A hybrid pixel-based classification method for blood vessel segmentation and aneurysm detection on CTA

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kostopoulos, S en
dc.contributor.author Glotsos, D en
dc.contributor.author Kagadis, GC en
dc.contributor.author Daskalakis, A en
dc.contributor.author Spyridonos, P en
dc.contributor.author Kalatzis, I en
dc.contributor.author Karamessini, M en
dc.contributor.author Petsas, T en
dc.contributor.author Cavouras, D en
dc.contributor.author Nikiforidis, G en
dc.date.accessioned 2014-03-01T01:56:16Z
dc.date.available 2014-03-01T01:56:16Z
dc.date.issued 2007 en
dc.identifier.issn 00978493 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/28032
dc.subject CTA en
dc.subject FHCE en
dc.subject Hybrid en
dc.subject Snake en
dc.subject Vessel segmentation en
dc.subject.other Algorithms en
dc.subject.other Blood vessels en
dc.subject.other Image reconstruction en
dc.subject.other Image segmentation en
dc.subject.other Medical imaging en
dc.subject.other Radiology en
dc.subject.other Computed Tomography Angiography en
dc.subject.other Pixel-based classification en
dc.subject.other Vessel segmentation en
dc.subject.other Classification (of information) en
dc.title A hybrid pixel-based classification method for blood vessel segmentation and aneurysm detection on CTA en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.cag.2007.01.020 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.cag.2007.01.020 en
heal.publicationDate 2007 en
heal.abstract In the present study, a hybrid semi-supervised pixel-based classification algorithm is proposed for the automatic segmentation of intracranial aneurysms in Computed Tomography Angiography images. The algorithm was designed to discriminate image pixels as belonging to one of the two classes: blood vessel and brain parenchyma. Its accuracy in vessel and aneurysm detection was compared with two other reliable methods that have already been applied in vessel segmentation applications: (a) an advanced and novel thresholding technique, namely the frequency histogram of connected elements (FHCE), and (b) the gradient vector flow snake. The comparison was performed by means of the segmentation matching factor (SMF) that expressed how precise and reproducible was the vessel and aneurysm segmentation result of each method against the manual segmentation of an experienced radiologist, who was considered as the gold standard. Results showed a superior SMF for the hybrid (SMF=88.4%) and snake (SMF=87.2%) methods compared to the FHCE (SMF=68.9%). The major advantage of the proposed hybrid method is that it requires no a priori knowledge of the topology of the vessels and no operator intervention, in contrast to the other methods examined. The hybrid method was efficient enough for use in 3D blood vessel reconstruction. © 2007 Elsevier Ltd. All rights reserved. en
heal.journalName Computers and Graphics (Pergamon) en
dc.identifier.doi 10.1016/j.cag.2007.01.020 en
dc.identifier.volume 31 en
dc.identifier.issue 3 en
dc.identifier.spage 493 en
dc.identifier.epage 500 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής