dc.contributor.author |
Kokkorakis, GC |
en |
dc.date.accessioned |
2014-03-01T01:56:17Z |
|
dc.date.available |
2014-03-01T01:56:17Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
09205071 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28040 |
|
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Computation theory |
en |
dc.subject.other |
Electric field effects |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Body dimensions |
en |
dc.subject.other |
Elliptic integrals |
en |
dc.subject.other |
Nanostructures |
en |
dc.title |
Calculating the electric field in nanostructures |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1163/156939307782000370 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1163/156939307782000370 |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
An integral equation approach is presented for the calculation of the local electric field induced in nanostructures embedded in an homogeneous electric field. The equation is solved using simple approximations, which arise from the symmetry of the considered structures, in terms of well known elliptic integrals. The approach presented allows direct calculation of the enhancement factor in various configurations. In this way overcomes the limitations imposed by the body dimensions inherent in previous approaches and can easily be extended to periodic configurations. The results are useful in the estimation of the actual field developed in nanostructures encountered in practice. © 2007 VSP. |
en |
heal.journalName |
Journal of Electromagnetic Waves and Applications |
en |
dc.identifier.doi |
10.1163/156939307782000370 |
en |
dc.identifier.volume |
21 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
1433 |
en |
dc.identifier.epage |
1443 |
en |