dc.contributor.author |
Chrysafinos, K |
en |
dc.date.accessioned |
2014-03-01T01:56:18Z |
|
dc.date.available |
2014-03-01T01:56:18Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
17055105 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28045 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-50049113911&partnerID=40&md5=e860c1cd2f7b935d32bbb13eae866b5a |
en |
dc.subject |
Convection dominated |
en |
dc.subject |
Convection-diffusion equations |
en |
dc.subject |
Discontinuous Galerkin |
en |
dc.subject |
Distributed control |
en |
dc.subject |
Error estimates |
en |
dc.subject |
Optimal control |
en |
dc.subject |
Parabolic PDE's |
en |
dc.title |
Discontinuous galerkin approximations for distributed optimal control problems constrained by parabolic PDE's |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
A discontinuous Galerkin finite element method for optimal control problems having states constrained by linear parabolic PDE's is examined. The spacial operator may depend on time and need not be self-adjoint. The schemes considered here are discontinuous in time but conforming in space. Fully-discrete error estimates of arbitrary order are presented and various constants are tracked. In particular, the estimates are valid for small values of α, γ, where α denotes the penalty parameter of the cost functional and γ the coercivity constant. Finally, error estimates for the convection dominated convection-diffusion equation are presented, based on a Lagrangian moving mesh approach. © 2007 Institute for Scientific Computing and Information. |
en |
heal.journalName |
International Journal of Numerical Analysis and Modeling |
en |
dc.identifier.volume |
4 |
en |
dc.identifier.issue |
3-4 |
en |
dc.identifier.spage |
690 |
en |
dc.identifier.epage |
712 |
en |