dc.contributor.author |
Ming, HY |
en |
dc.contributor.author |
Li, XS |
en |
dc.contributor.author |
Dafalias, YF |
en |
dc.date.accessioned |
2014-03-01T01:56:21Z |
|
dc.date.available |
2014-03-01T01:56:21Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
15323641 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28073 |
|
dc.subject |
Anisotropy |
en |
dc.subject |
Constitutive models |
en |
dc.subject |
Coupling |
en |
dc.subject |
Earth pressure |
en |
dc.subject |
Liquefaction |
en |
dc.subject |
Retaining walls |
en |
dc.subject |
Seismic effects |
en |
dc.subject.other |
Anisotropy |
en |
dc.subject.other |
Constitutive models |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Pressure |
en |
dc.subject.other |
Retaining walls |
en |
dc.subject.other |
Seismic response |
en |
dc.subject.other |
Shear strength |
en |
dc.subject.other |
Soil liquefaction |
en |
dc.subject.other |
Strain |
en |
dc.subject.other |
Stress analysis |
en |
dc.subject.other |
Structural loads |
en |
dc.subject.other |
Seismic effect |
en |
dc.subject.other |
Soil anisotropy |
en |
dc.subject.other |
Triaxial compression |
en |
dc.subject.other |
Soil structure interactions |
en |
dc.subject.other |
anisotropy |
en |
dc.subject.other |
compression |
en |
dc.subject.other |
coupling |
en |
dc.subject.other |
finite element method |
en |
dc.subject.other |
loading |
en |
dc.subject.other |
retaining wall |
en |
dc.subject.other |
seismicity |
en |
dc.subject.other |
shear strength |
en |
dc.subject.other |
soil-structure interaction |
en |
dc.subject.other |
stress-strain relationship |
en |
dc.title |
Numerical study of impact of soil anisotropy on seismic performance of retaining structure |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1061/(ASCE)1532-3641(2007)7:5(382) |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1061/(ASCE)1532-3641(2007)7:5(382) |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
Recent laboratory investigations indicate that the stress-strain-strength responses of granular soils are appreciably affected by the fabric orientation of the soil relative to the frame of principal stresses. Especially, a sand specimen exhibiting a dilative response during triaxial compression may show a contractive response during triaxial extension under otherwise identical conditions. This observation is of practical importance for applications concerning essentially undrained loading conditions, because the effective mean normal stress at failure, and consequently, the shear strength, associated with an undrained contractive path are considerably lower than those following a dilative path. This raises a question about the impact of soil anisotropy on seismic performance of retaining structures subjected to active and passive earth pressures, because the directions of principal stresses in retained soils for the two cases are very different. This note presents a set of fully coupled finite-element analyses incorporating an anisotropic sand model. The analyses reveal that the impact of fabric anisotropy could be significant when the retaining structure is under passive earth pressure conditions. © 2007 ASCE. |
en |
heal.journalName |
International Journal of Geomechanics |
en |
dc.identifier.doi |
10.1061/(ASCE)1532-3641(2007)7:5(382) |
en |
dc.identifier.volume |
7 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
382 |
en |
dc.identifier.epage |
388 |
en |