dc.contributor.author |
Kokolakis, G |
en |
dc.contributor.author |
Kouvaras, G |
en |
dc.date.accessioned |
2014-03-01T01:56:31Z |
|
dc.date.available |
2014-03-01T01:56:31Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
1931-6690 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28138 |
|
dc.subject |
convexity |
en |
dc.subject |
Dirichlet process |
en |
dc.subject |
multimodal distribution functions |
en |
dc.subject |
Polya trees |
en |
dc.subject |
random probability measures |
en |
dc.title |
On the Multimodality of Random Probability Measures |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
Nonparametric methods for density estimation are examined here. Within a Bayesian setting the construction of an absolutely continuous random probability measure is often required for nonparametric statistical analysis. To achieve this we propose a "partial convexification" procedure of a process, such as the Dirichlet, resulting in a multimodal distribution function with a finite expected number of modes. In agreement with convexity theory results, it is shown that the derived random probability measure admits a density with respect to Lebesgue measure. |
en |
heal.publisher |
INT SOC BAYESIAN ANALYSIS |
en |
heal.journalName |
BAYESIAN ANALYSIS |
en |
dc.identifier.isi |
ISI:000207454400011 |
en |
dc.identifier.volume |
2 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
213 |
en |
dc.identifier.epage |
219 |
en |