dc.contributor.author |
Dedoussis, V |
en |
dc.contributor.author |
Canellidis, V |
en |
dc.contributor.author |
Mathioudakis, K |
en |
dc.date.accessioned |
2014-03-01T01:57:05Z |
|
dc.date.available |
2014-03-01T01:57:05Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
17452759 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28338 |
|
dc.subject |
Aerodynamic modelling |
en |
dc.subject |
Compressor blading |
en |
dc.subject |
Rapid prototyping |
en |
dc.subject |
Stereolithography |
en |
dc.subject.other |
Aerodynamics |
en |
dc.subject.other |
Air |
en |
dc.subject.other |
Compressors |
en |
dc.subject.other |
Concurrent engineering |
en |
dc.subject.other |
Fabrication |
en |
dc.subject.other |
Gas dynamics |
en |
dc.subject.other |
Job analysis |
en |
dc.subject.other |
Optical design |
en |
dc.subject.other |
Product development |
en |
dc.subject.other |
Rapid prototyping |
en |
dc.subject.other |
Stereolithography |
en |
dc.subject.other |
Aerodynamic modelling |
en |
dc.subject.other |
Aerodynamic testing |
en |
dc.subject.other |
Blade surfaces |
en |
dc.subject.other |
Blading |
en |
dc.subject.other |
Compressor blading |
en |
dc.subject.other |
Computational results |
en |
dc.subject.other |
Experimental investigations |
en |
dc.subject.other |
Flow conditioning |
en |
dc.subject.other |
Incidence angles |
en |
dc.subject.other |
Inviscid flows |
en |
dc.subject.other |
Linear cascades |
en |
dc.subject.other |
Linear compressors |
en |
dc.subject.other |
Numerical schemes |
en |
dc.subject.other |
Post-processing |
en |
dc.subject.other |
Pressure tubing |
en |
dc.subject.other |
Prototyping |
en |
dc.subject.other |
Test modeling |
en |
dc.subject.other |
Wind tunnel test models |
en |
dc.subject.other |
Testing |
en |
dc.title |
Aerodynamic experimental investigation using stereolithography fabricated test models: The case of a linear compressor blading cascade |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/17452750802120201 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/17452750802120201 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
The purpose of this work is to demonstrate that rapid prototyping can be effectively applied for fabricating test models to be used in aerodynamic experimental investigations. The present work, in particular, concerns a linear cascade of 21/2-D blades, with NACA 65-12(A10)10 profile section. Each one of the nine separate (identical) blades of the cascade has been fabricated using a stereolithography rapid prototyping technique. The cascade has been installed in an aerodynamic test rig, in order to simulate the flow conditions through a compressor blading. Aspects concerning the fabrication of the test models/blades, their functionality, their post-processing, the mounting arrangement and the pressure tubing and ports are discussed in detail. Experimental results for the distribution of the blade surface airflow pressure for various incidence angles compare favourably with computational results obtained with a panel inviscid flow numerical scheme. This implicitly indicates the effectiveness of employing stereolithography for fabricating wind tunnel test models. |
en |
heal.journalName |
Virtual and Physical Prototyping |
en |
dc.identifier.doi |
10.1080/17452750802120201 |
en |
dc.identifier.volume |
3 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
151 |
en |
dc.identifier.epage |
157 |
en |