HEAL DSpace

An advanced radial base structure for Wind Power Forecasting

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sideratos, GN en
dc.contributor.author Hatziargyriou, ND en
dc.date.accessioned 2014-03-01T01:57:05Z
dc.date.available 2014-03-01T01:57:05Z
dc.date.issued 2008 en
dc.identifier.issn 10783466 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/28339
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-50249155952&partnerID=40&md5=20166aef0e32f8141a2693803a48e854 en
dc.subject Economic scheduling en
dc.subject Radial base function networks en
dc.subject Self-organized map en
dc.subject Wind Power Forecasting en
dc.subject.other Artificial intelligence en
dc.subject.other Electric power systems en
dc.subject.other Electric utilities en
dc.subject.other Farms en
dc.subject.other Forecasting en
dc.subject.other Neural networks en
dc.subject.other Renewable energy resources en
dc.subject.other Speed en
dc.subject.other Statistical methods en
dc.subject.other Wind effects en
dc.subject.other Wind power en
dc.subject.other Artificial intelligence techniques en
dc.subject.other Base structure en
dc.subject.other Economic scheduling en
dc.subject.other Electricity markets en
dc.subject.other Long-term prediction en
dc.subject.other Operational planning en
dc.subject.other Power outputs en
dc.subject.other Power production en
dc.subject.other Power systems en
dc.subject.other Radial base function networks en
dc.subject.other Radial basis networks en
dc.subject.other Radial basis neural networks en
dc.subject.other Self-organized map en
dc.subject.other Self-Organized Maps en
dc.subject.other Wind farms en
dc.subject.other Wind Power Forecasting en
dc.subject.other Wind speed en
dc.subject.other Electric load forecasting en
dc.title An advanced radial base structure for Wind Power Forecasting en
heal.type journalArticle en
heal.publicationDate 2008 en
heal.abstract This article presents an advanced Wind Power Forecasting method based on applications of artificial intelligence techniques. The method belongs to the statistical methods. It requires as input past wind power measurements and meteorological forecasts of wind speed and direction interpolated in the site of the wind farm. A self-organized map is trained to classify the forecasted local wind speed provided by the meteorological services. For each class of wind speed, a radial basis neural network is used to predict the windfarm power output. Different radial basis networks are applied for short-term and for long-term prediction. The proposed model is suitable for operational planning of power systems with increased wind power penetration, i.e. 48 hours and for Wind farm operators trading in electricity markets. Application of the forecasting method on the power production of actual wind farms shows the validity of the method. en
heal.journalName International Journal of Power and Energy Systems en
dc.identifier.volume 28 en
dc.identifier.issue 3 en
dc.identifier.spage 281 en
dc.identifier.epage 288 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής