HEAL DSpace

Combined genetic computation of microscopic trip demand in urban networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsekeris, T en
dc.contributor.author Dimitriou, L en
dc.contributor.author Stathopoulos, A en
dc.date.accessioned 2014-03-01T01:57:06Z
dc.date.available 2014-03-01T01:57:06Z
dc.date.issued 2008 en
dc.identifier.issn 1860949X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/28343
dc.subject Genetic computation en
dc.subject Microscopic simulation en
dc.subject Traffic flows en
dc.subject Trip demand en
dc.subject Urban networks en
dc.title Combined genetic computation of microscopic trip demand in urban networks en
heal.type journalArticle en
heal.identifier.primary 10.1007/978-3-540-69390-1_1 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-69390-1_1 en
heal.publicationDate 2008 en
heal.abstract This chapter describes a combined genetic computation approach for estimating time-varying Origin-Destination (O-D) trip demand matrices from traffic counts in urban networks. The estimation procedure combines a microscopic model simulating traffic flow conditions with a genetic algorithm to synthesize the network O-D trip matrix, through determining the turning flow proportions at each intersection. The proposed approach avoids the restrictions involved in employing a user-optimal Dynamic Traffic Assignment (DTA) procedure and carries out a stochastic global search of the optimal O-D trip and turning flow distributions. The multi-objective, single-level optimization formulation of the problem provides a mutually consistent solution between the resulting O-D matrix and path/link flow pattern, which minimizes the difference between estimated and observed link flows. The model implementation into a real arterial sub-network demonstrates its ability to microscopically estimate trip demand with satisfactory accuracy and fast computing speeds which allow its usage in dynamic urban traffic operations. © 2008 Springer-Verlag Berlin Heidelberg. en
heal.journalName Studies in Computational Intelligence en
dc.identifier.doi 10.1007/978-3-540-69390-1_1 en
dc.identifier.volume 144 en
dc.identifier.spage 3 en
dc.identifier.epage 21 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής