dc.contributor.author |
Tsekeris, T |
en |
dc.contributor.author |
Dimitriou, L |
en |
dc.contributor.author |
Stathopoulos, A |
en |
dc.date.accessioned |
2014-03-01T01:57:06Z |
|
dc.date.available |
2014-03-01T01:57:06Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1860949X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28343 |
|
dc.subject |
Genetic computation |
en |
dc.subject |
Microscopic simulation |
en |
dc.subject |
Traffic flows |
en |
dc.subject |
Trip demand |
en |
dc.subject |
Urban networks |
en |
dc.title |
Combined genetic computation of microscopic trip demand in urban networks |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/978-3-540-69390-1_1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-540-69390-1_1 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
This chapter describes a combined genetic computation approach for estimating time-varying Origin-Destination (O-D) trip demand matrices from traffic counts in urban networks. The estimation procedure combines a microscopic model simulating traffic flow conditions with a genetic algorithm to synthesize the network O-D trip matrix, through determining the turning flow proportions at each intersection. The proposed approach avoids the restrictions involved in employing a user-optimal Dynamic Traffic Assignment (DTA) procedure and carries out a stochastic global search of the optimal O-D trip and turning flow distributions. The multi-objective, single-level optimization formulation of the problem provides a mutually consistent solution between the resulting O-D matrix and path/link flow pattern, which minimizes the difference between estimated and observed link flows. The model implementation into a real arterial sub-network demonstrates its ability to microscopically estimate trip demand with satisfactory accuracy and fast computing speeds which allow its usage in dynamic urban traffic operations. © 2008 Springer-Verlag Berlin Heidelberg. |
en |
heal.journalName |
Studies in Computational Intelligence |
en |
dc.identifier.doi |
10.1007/978-3-540-69390-1_1 |
en |
dc.identifier.volume |
144 |
en |
dc.identifier.spage |
3 |
en |
dc.identifier.epage |
21 |
en |