HEAL DSpace

Deterministic conflict-free coloring for intervals: From offline to online

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Bar-Noy, A en
dc.contributor.author Cheilaris, P en
dc.contributor.author Smorodinsky, S en
dc.date.accessioned 2014-03-01T01:57:06Z
dc.date.available 2014-03-01T01:57:06Z
dc.date.issued 2008 en
dc.identifier.issn 15496325 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/28349
dc.subject Cellular networks en
dc.subject Coloring en
dc.subject Conflict free en
dc.subject Frequency assignment en
dc.subject Online algorithms en
dc.subject.other Cellular networks en
dc.subject.other Conflict free en
dc.subject.other Frequency assignment en
dc.subject.other Online algorithms en
dc.subject.other Cellular neural networks en
dc.subject.other Computer networks en
dc.subject.other Graph theory en
dc.subject.other Coloring en
dc.title Deterministic conflict-free coloring for intervals: From offline to online en
heal.type journalArticle en
heal.identifier.primary 10.1145/1383369.1383375 en
heal.identifier.secondary http://dx.doi.org/10.1145/1383369.1383375 en
heal.identifier.secondary 44 en
heal.publicationDate 2008 en
heal.abstract We investigate deterministic algorithms for a frequency assignment problem in cellular networks. The problem can be modeled as a special vertex coloring problem for hypergraphs: In every hyperedge there must exist a vertex with a color that occurs exactly once in the hyperedge (the conflict-free property). We concentrate on a special case of the problem, called conflict-free coloring for intervals. We introduce a hierarchy of four models for the aforesaid problem: (i) static, (ii) dynamic offline, (iii) dynamic online with absolute positions, and (iv) dynamic online with relative positions. In the dynamic offline model, we give a deterministic algorithm that uses at most log3/2 n + 1 ≈ 1.71 log2 n colors and show inputs that force any algorithm to use at least 3 log5 n + 1 1.29 log2 n colors. For the online absolute-positions model, we give a deterministic algorithm that uses at most 3⌈log3 n⌉ 1.89 log2 n colors. To the best of our knowledge, this is the first deterministic online algorithm using O(log n) colors in a nontrivial online model. In the online relative-positions model, we resolve an open problem by showing a tight analysis on the number of colors used by the first-fit greedy online algorithm. We also consider conflict-free coloring only with respect to intervals that contain at least one of the two extreme points. © 2008 ACM. en
heal.journalName ACM Transactions on Algorithms en
dc.identifier.doi 10.1145/1383369.1383375 en
dc.identifier.volume 4 en
dc.identifier.issue 4 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής