dc.contributor.author |
Bar-Noy, A |
en |
dc.contributor.author |
Cheilaris, P |
en |
dc.contributor.author |
Smorodinsky, S |
en |
dc.date.accessioned |
2014-03-01T01:57:06Z |
|
dc.date.available |
2014-03-01T01:57:06Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
15496325 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28349 |
|
dc.subject |
Cellular networks |
en |
dc.subject |
Coloring |
en |
dc.subject |
Conflict free |
en |
dc.subject |
Frequency assignment |
en |
dc.subject |
Online algorithms |
en |
dc.subject.other |
Cellular networks |
en |
dc.subject.other |
Conflict free |
en |
dc.subject.other |
Frequency assignment |
en |
dc.subject.other |
Online algorithms |
en |
dc.subject.other |
Cellular neural networks |
en |
dc.subject.other |
Computer networks |
en |
dc.subject.other |
Graph theory |
en |
dc.subject.other |
Coloring |
en |
dc.title |
Deterministic conflict-free coloring for intervals: From offline to online |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1145/1383369.1383375 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1145/1383369.1383375 |
en |
heal.identifier.secondary |
44 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
We investigate deterministic algorithms for a frequency assignment problem in cellular networks. The problem can be modeled as a special vertex coloring problem for hypergraphs: In every hyperedge there must exist a vertex with a color that occurs exactly once in the hyperedge (the conflict-free property). We concentrate on a special case of the problem, called conflict-free coloring for intervals. We introduce a hierarchy of four models for the aforesaid problem: (i) static, (ii) dynamic offline, (iii) dynamic online with absolute positions, and (iv) dynamic online with relative positions. In the dynamic offline model, we give a deterministic algorithm that uses at most log3/2 n + 1 ≈ 1.71 log2 n colors and show inputs that force any algorithm to use at least 3 log5 n + 1 1.29 log2 n colors. For the online absolute-positions model, we give a deterministic algorithm that uses at most 3⌈log3 n⌉ 1.89 log2 n colors. To the best of our knowledge, this is the first deterministic online algorithm using O(log n) colors in a nontrivial online model. In the online relative-positions model, we resolve an open problem by showing a tight analysis on the number of colors used by the first-fit greedy online algorithm. We also consider conflict-free coloring only with respect to intervals that contain at least one of the two extreme points. © 2008 ACM. |
en |
heal.journalName |
ACM Transactions on Algorithms |
en |
dc.identifier.doi |
10.1145/1383369.1383375 |
en |
dc.identifier.volume |
4 |
en |
dc.identifier.issue |
4 |
en |