HEAL DSpace

Genetically optimized infrastructure design strategies in degradable transport networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Dimitriou, L en
dc.contributor.author Tsekeris, T en
dc.contributor.author Stathopoulos, A en
dc.date.accessioned 2014-03-01T01:57:09Z
dc.date.available 2014-03-01T01:57:09Z
dc.date.issued 2008 en
dc.identifier.issn 1860949X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/28361
dc.subject Degradable transport networks en
dc.subject Discrete and continuous system structures en
dc.subject Game theory en
dc.subject Genetic algorithm en
dc.subject Latin hypercube sampling en
dc.subject Stochastic optimum network design en
dc.subject Systems reliability en
dc.title Genetically optimized infrastructure design strategies in degradable transport networks en
heal.type journalArticle en
heal.identifier.primary 10.1007/978-3-540-69390-1_2 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-69390-1_2 en
heal.publicationDate 2008 en
heal.abstract This chapter examines the problem of the resource allocation in degradable road transport networks within a stochastic evolutionary optimization framework. This framework expresses the stochastic equilibrium Network Design Problem (NDP) as a game-theoretic, combinatorial bi-level program. Both the discrete and continuous versions of the reliable NDP are considered in order to address different strategies of network infrastructure investment. The estimation procedure employs a Latin Hypercube sampling method for simulating degradation-inducing variations in users' attributes and system characteristics, and hence evaluates the network travel time reliability which constrains the solution. This simulation-based risk assessment technique is combined with a genetic algorithm to handle the complex, non-convex nature of the NDP adequately. The test implementation of the proposed framework demonstrates the significant role of incorporating the stochasticity and reliability requirements in the design process to facilitate the selection of the optimal investment strategies in degradable road networks. © 2008 Springer-Verlag Berlin Heidelberg. en
heal.journalName Studies in Computational Intelligence en
dc.identifier.doi 10.1007/978-3-540-69390-1_2 en
dc.identifier.volume 144 en
dc.identifier.spage 23 en
dc.identifier.epage 43 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής