HEAL DSpace

Routing optimization heuristics algorithms for urban solid waste transportation management

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karadimas, NV en
dc.contributor.author Doukas, N en
dc.contributor.author Kolokathi, M en
dc.contributor.author Defteraiou, G en
dc.date.accessioned 2014-03-01T01:57:11Z
dc.date.available 2014-03-01T01:57:11Z
dc.date.issued 2008 en
dc.identifier.issn 11092750 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/28379
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-59249087880&partnerID=40&md5=5757af0ba6fbdf33a8e47af86cc342b9 en
dc.subject Ant colony system en
dc.subject ArcGIS network analyst en
dc.subject Optimization algorithms en
dc.subject Routing en
dc.subject Simulation en
dc.subject Waste collection en
dc.subject.other Algorithms en
dc.subject.other Applications en
dc.subject.other Combinatorial mathematics en
dc.subject.other Combinatorial optimization en
dc.subject.other Geographic information systems en
dc.subject.other Highway planning en
dc.subject.other Motor transportation en
dc.subject.other Optimization en
dc.subject.other Planning en
dc.subject.other Solid wastes en
dc.subject.other Waste management en
dc.subject.other Ant colony system en
dc.subject.other ArcGIS network analyst en
dc.subject.other Optimization algorithms en
dc.subject.other Routing en
dc.subject.other Simulation en
dc.subject.other Waste collection en
dc.subject.other Routing algorithms en
dc.title Routing optimization heuristics algorithms for urban solid waste transportation management en
heal.type journalArticle en
heal.publicationDate 2008 en
heal.abstract During the last decade, metaheuristics have become increasingly popular for effectively confronting difficult combinatorial optimization problems. In the present paper, two individual meatheuristic algorithmic solutions, the ArcGIS Network Analyst and the Ant Colony System (ACS) algorithm, are introduced, implemented and discussed for the identification of optimal routes in the case of Municipal Solid Waste (MSW) collection. Both proposed applications are based on a geo-referenced spatial database supported by a Geographic Information System (GIS). GIS are increasingly becoming a central element for coordinating, planning and managing transportation systems, and so in collaboration with combinatorial optimization techniques they can be used to improve aspects of transit planning in urban regions. Here, the GIS takes into account all the required parameters for the MSW collection (i.e. positions of waste bins, road network and the related traffic, truck capacities, etc) and its desktop users are able to model realistic network conditions and scenarios. In this case, the simulation consists of scenarios of visiting varied waste collection spots in the Municipality of Athens (MoA). The user, in both applications, is able to define or modify all the required dynamic factors for the creation of an initial scenario, and by modifying these particular parameters, alternative scenarios can be generated. Finally, the optimal solution is estimated by each routing optimization algorithm, followed by a comparison between these two algorithmic approaches on the newly designed collection routes. Furthermore, the proposed interactive design of both approaches has potential application in many other environmental planning and management problems. en
heal.journalName WSEAS Transactions on Computers en
dc.identifier.volume 7 en
dc.identifier.issue 12 en
dc.identifier.spage 2022 en
dc.identifier.epage 2031 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής