dc.contributor.author |
Loizou, SG |
en |
dc.contributor.author |
Jadbabaie, A |
en |
dc.date.accessioned |
2014-03-01T01:57:22Z |
|
dc.date.available |
2014-03-01T01:57:22Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0018-9286 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28407 |
|
dc.subject |
almost gas systems |
en |
dc.subject |
density functions |
en |
dc.subject |
dual Lyapunov techniques |
en |
dc.subject |
navigation functions (NFs) |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
EXACT ROBOT NAVIGATION |
en |
dc.subject.other |
STABILITY |
en |
dc.title |
Density functions for navigation-function-based systems |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In this paper, we present a scheme for constructing density functions for systems that are almost globally asymptotically stable (i.e., systems for which all trajectories converge to an equilibrium except for a set of measure zero) using navigation functions (NFs). Although recently-proven converse theorems guarantee the existence of density functions for such systems, such results are only existential and the construction of a density function for almost globally asymptotically stable systems remains a challenging task. We show that for a specific class of dynamical systems that are defined based on an NF, a density function can be easily derived from the system's underlying NF. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE TRANSACTIONS ON AUTOMATIC CONTROL |
en |
dc.identifier.isi |
ISI:000254184600019 |
en |
dc.identifier.volume |
53 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
612 |
en |
dc.identifier.epage |
617 |
en |