dc.contributor.author |
Croustalloudi, MN |
en |
dc.contributor.author |
Kalvouridis, TJ |
en |
dc.date.accessioned |
2014-03-01T01:57:34Z |
|
dc.date.available |
2014-03-01T01:57:34Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0004-640X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28438 |
|
dc.subject |
Celestial mechanics |
en |
dc.subject |
ring problem |
en |
dc.subject |
periodic orbits |
en |
dc.subject.classification |
Astronomy & Astrophysics |
en |
dc.subject.other |
3-DIMENSIONAL RING PROBLEM |
en |
dc.subject.other |
N-BODIES |
en |
dc.subject.other |
ORBITS |
en |
dc.subject.other |
BIFURCATIONS |
en |
dc.subject.other |
EQUILIBRIA |
en |
dc.subject.other |
STABILITY |
en |
dc.subject.other |
SATELLITE |
en |
dc.subject.other |
EVOLUTION |
en |
dc.subject.other |
DYNAMICS |
en |
dc.subject.other |
FAMILIES |
en |
dc.title |
Periodic motions of a small body in the Newtonian field of a regular polygonal configuration of nu+1 bodies |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
We study the simple periodic orbits of a particle that is subject to the gravitational action of the much bigger primary bodies which form a regular polygonal configuration of (nu+1) bodies when nu=8. We investigate the distribution of the characteristic curves of the families and their evolution in the phase space of the initial conditions, we describe various types of simple periodic orbits and we study their linear stability. Plots and tables illustrate the obtained material and reveal many interesting aspects regarding particle dynamics in such a multi-body system. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
ASTROPHYSICS AND SPACE SCIENCE |
en |
dc.identifier.isi |
ISI:000254452300002 |
en |
dc.identifier.volume |
314 |
en |
dc.identifier.issue |
1-3 |
en |
dc.identifier.spage |
7 |
en |
dc.identifier.epage |
18 |
en |