dc.contributor.author |
Argyros, SA |
en |
dc.contributor.author |
Arvanitakis, AD |
en |
dc.contributor.author |
Mercourakis, SK |
en |
dc.date.accessioned |
2014-03-01T01:57:37Z |
|
dc.date.available |
2014-03-01T01:57:37Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0166-8641 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/28454 |
|
dc.subject |
Talagrand compact |
en |
dc.subject |
K-sigma delta space |
en |
dc.subject |
K-analytic space |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
BANACH-SPACES |
en |
dc.title |
Talagrand's K-sigma delta problem |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
We show that the Banach spaces C(K) with K either an adequate Talagrand compact or a quasi adequate sigma-Eberlein Talagrand compact are K-sigma delta subsets of their second dual endowed with the weak* topology. As consequence we obtain that weakly K-analytic Banach spaces with an unconditional basis are K-sigma delta. We also provide an example of a Talagrand compact K such that C(K) is not K-sigma delta in its second dual. This answers a problem posed by M. Talagrand. (C) 2008 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
TOPOLOGY AND ITS APPLICATIONS |
en |
dc.identifier.isi |
ISI:000258751900014 |
en |
dc.identifier.volume |
155 |
en |
dc.identifier.issue |
15 |
en |
dc.identifier.spage |
1737 |
en |
dc.identifier.epage |
1755 |
en |